

Shannon Holloway, MHS, PA-C Infectious Diseases MD Anderson Cancer Center August 26, 2022

OBJECTIVES

- Define HLH
- Discuss pathophysiology
- Name predominant triggers
- Recite the diagnostic criteria
- Understand the clinical features
- Describe elements of the work up
- Appreciate the challenges of identification and successful treatment
- Pledge to be HLH Ambassadors

HLH SYNDROMES

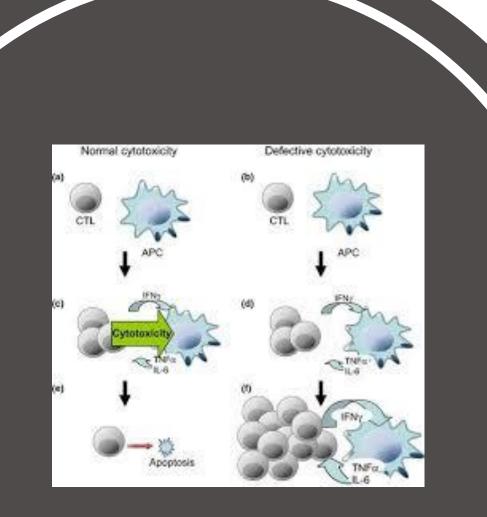
- Primary HLH
 - Caused by genetic mutations impairing the cytotoxic function of natural killer (NK) cells and cytotoxic T cells
 - Typically presents in infancy and childhood (average age 10 months)
 - Familial HLH (autosomal recessive), or other inherited immunodeficiency syndromes such as Chediak-Higashi, Gricelli, and type II Hermansky-Pudlak syndromes

Secondary HLH

- Not genetic
- Often called reactive because something triggers it, a predisposing condition such as viruses, autoimmune conditions, malignancies, or post-transplant (solid and stem cell)
- Macrophage activation syndrome (MAS) is a term applied when HLH disease is associated with rheumatological disease such as juvenile idiopathic arthritis and systemic lupus erythematosus

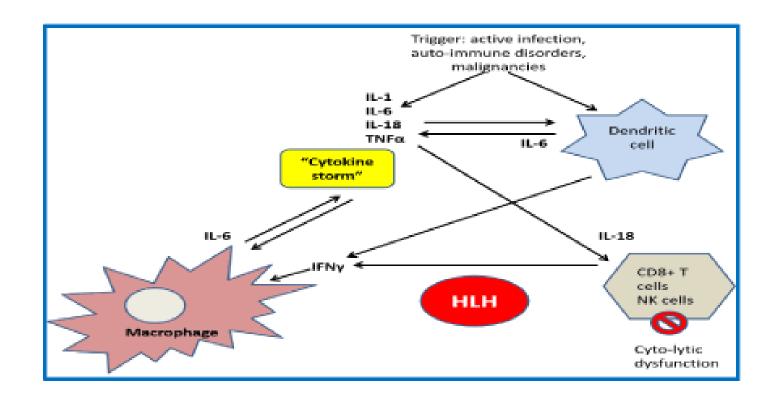
DTTNITIO	
----------	--

HLH – HEMOPHAGOCYTIC LYMPHOCYTOSIS


- Definition: HLH is a syndrome of severe immune activation and deregulation characterized by hyperactive macrophages and lymphocytes, proinflammatory cytokine hypersecretion, tissue infiltration, hemophagocytosis, and organ damage. This syndrome can be classified as primary and secondary HLH.
- Macrophages: professional antigen presenting cells (APCs), derived from monocytes
- Natural killer (NK) cells: lymphocytes that eliminate damaged, stressed, or infected host cells (such as macrophages)
- Cytotoxic lymphocytes (CTLs): activated T lymphocytes which lyse autologous cells such as macrophages bearing foreign antigens
- Histiocytosis A generic name for a group of syndromes characterized by an abnormal increase in the number of certain immune cells called histiocytes. These include monocytes, macrophages, and dendritic cells

Cytokines of i	innate i	immunity.
----------------	----------	-----------

Cytokine	Principal cell source(s)	Principal cellular targets and biologic effects	
Tumor necrosis factor (TNF)	Macrophages, T cells	Endothelial cells: activation (inflammation, coagulation) Neutrophils: activation Hypothalamus: fever Liver: synthesis of acute phase proteins Muscle, fat: catabolism (cachexia) Many cell types: apoptosis	
Interleukin (IL-1)	Macrophages, endothelial cells, some epithelial cells	Endothelial cells: activation (inflammation, coagulation) Hypothalamus: fever Liver: synthesis of acute phase proteins	
Chemokines	Macrophages, endothelial cells, T cells, fibroblasts, platelets	Leukocytes: chemotaxis, activation	
Interleukin-12 (IL-12)	Macrophages, dendritic cells	NK cells and T cells: IFN-y synthesis, increased cytolytic activity T cells: T _H 1 differentiation	
Interferon-y (IFN-y)	NK cells, T lymphocytes	Activation of macrophages Stimulation of some antibody responses	
Type I IFNs (IFN-α, IFN-β)	IFN-α: Macrophages IFN-β: Fibroblasts	All cells: anti-viral state, increased class I MHC expression NK cells: activation	
Interleukin-10 (IL-10)	Macrophages, T cells (mainly T _H 2)	Macrophages: inhibition of IL-12 product reduced expression of costimulators a class II MHC molecules	
Interleukin-6 (IL-6)	Macrophages, endothelial cells, T cells	Liver: synthesis of acute phase proteins B cells: proliferation of antibody-producing cells	
Interleukin-15 (IL-15)	Macrophages, others	NK cells: proliferation T cells: proliferation	
Interleukin-18 (IL-18)	Macrophages	NK cells and T cells: IFN-y synthesis	


W.B. Saunders Company items and derived items copyright © 2002 by W.B. Saunders Company.

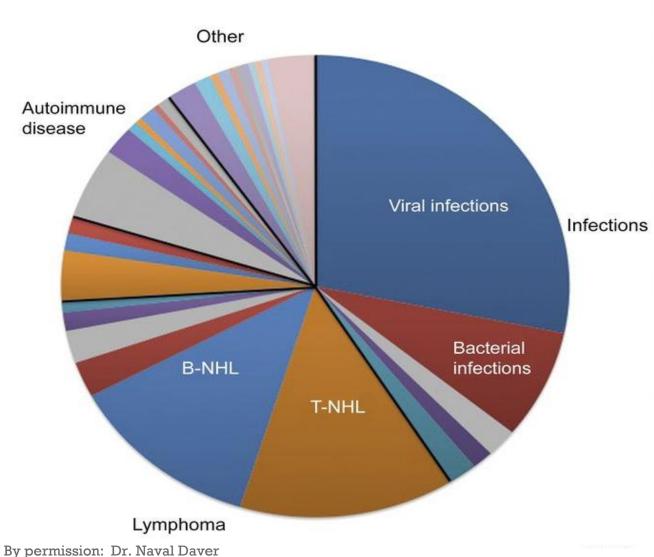
CYTOKINE STORM

- The persistent activation of macrophages, T cells, and CTLs in patients with HLH leads to excessive cytokine production (cytokine storm) by all these cell types
- This phenomenon leads to multiorgan failure and mortality

OD SECONDARY HL

					All and a set of the
--	--	--	--	--	----------------------

|--|--|--|--|--|--|

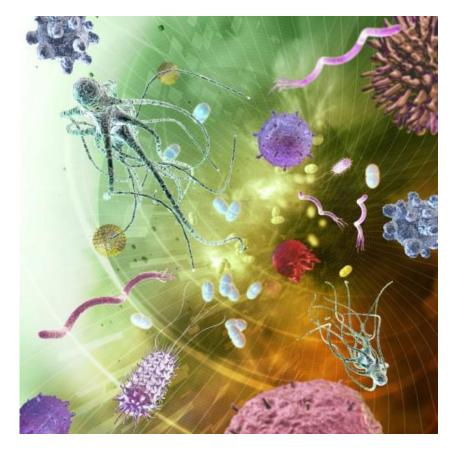


TWO BROAD CATEGORIES

- Triggers that cause immune activation
- Triggers that lead to immune deficiency

Secondary HLH: Causes

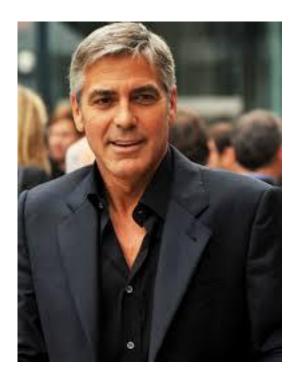
Virus infection Bacteria Parasites Fungi Infection (other) T-NHL B-NHL Leukemla Hodgkin Lymphoma (other) Castleman Hem NPL (other) Solid tumor ■NPL (other) ■ SLE Adult Still Rheumatoid arthritis Vasculitis Autoimmune (other) Inflammatory bowel disease Other Organ-sp AID Kidney transplantation HSCT Transplantation (Other) Drugs Surgery/Biopsy Vaccination/acute injuries Diabetes/chronic liver disease Pregnancy Hemodialysis Not specified Idiopathic/unknown


INFECTIONS AND HLH

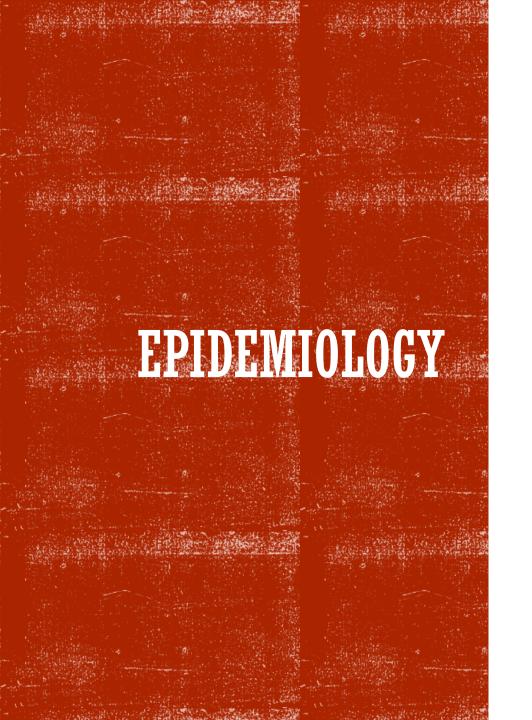
- Viral
 - EBV
 - CMV
 - Parvovirus
 - HSV
 - VZV
 - HHV6
 - Measles
 - Influenza
 - HIV
 - Covid-19

Bacterial Brucella GNRs TB

Parasites Leishmaniasis Malaria


Fungal

Malignancy


Transplant

Infection

- HLH is primarily a pediatric syndrome, with highest incidence < 3 months of age
- Incidence is 1: 100,000 children
- 25% of HLH cases are familial
- Male-to female ratio1:1 in children, but in adults males have a slightly higher rate
- Adults: review of 2197 cases reported worldwide: 50% were from Japan; supporting an ethnic predisposition of malignancy-related HLH

HLH DIAGNOSTIC CRITERIA

HLH CLINICAL PRESENTATION

- Presents as a febrile illness associated with multiple organ involvement
- Initial signs and symptoms can mimic common infections, fever of unknown origin, hepatitis or encephalitis
- Patients may have already experienced a prolonged hospitalization or clinical deterioration without a clear diagnosis

Table 1. Diagnostic criteria for HLH used in the HLH-2004 trial*

The diagnosis of HLH† may be established:

- A. Molecular diagnosis consistent with HLH: pathologic mutations of PRF1, UNC13D, Munc18-2, Rab27a, STX11, SH2D1A, or BIRC4
- or
- B. Five of the 8 criteria listed below are fulfilled:
 - 1. Fever ≥ 38.5°C
 - 2. Splenomegaly
 - 3. Cytopenias (affecting at least 2 of 3 lineages in the peripheral blood) Hemoglobin < 9 g/dL (in infants < 4 weeks: hemoglobin < 10 g/dL) Platelets < 100 × 10³/mL

Neutrophils < 1 × 103/mL

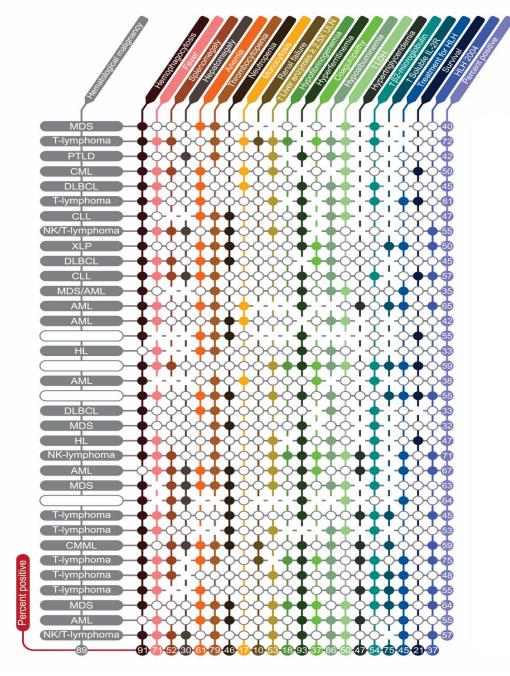
4. Hypertriglyceridemia (fasting, > 265 mg/dL) and/or hypofibrinogenemia

(< 150 mg/dL)

- 5. Hemophagocytosis in bone marrow, spleen, lymph nodes, or liver
- 6. Low or absent NK-cell activity
- 7. Ferritin > 500 ng/mL‡
- 8. Elevated sCD25 (α-chain of sIL-2 receptor)§

HLH Criteria: HLH-2004 Criteria

HLH-related Criteria	N (%) / Median [range]	
Fever	33 (92)	
Splenomegaly	26 (72)	
Ferritin > 500 ng/mL	36 (100)	
Median	52987 [3059 – 471540]	
≥ 10,000	30 (83)	
≥ 25,000	26 (72)	
≥ 50,000	18 (50)	
<u>New</u> ≥2 cytopenias	26 (72)	
Triglycerides	310 [65 – 929]	
Triglycerides ≥ 265 mg/dL	23 (64)	
Fibrinogen	200 [27 – 702]	
Fibrinogen ≤ 150 mg/dL	16 (44)	
Serum IL2R (32/36; 89%)	7010 [749 – 127000]	
>2400 U/mL	23/32 (72)	
NK function (decreased-profoundly decreased)	12/13 (92)	
Hemophagocytosis (18/36; 50%)	14/18 (78)	
Bone marrow	12 (86)	
Spleen and/or Liver	3 (14)	
Molecular (17/36; 47%)*	4/17 (24)	


PRESENTATION IN ADULTS - HLH

- Febrile illness
- Multiple organ involvement
- Hepatitis
- Encephalitis
- Bicytopenia (anemia, thrombocytopenia)
- Hypertriglyceridemia
- Hypofibrinogenemia
- Hemophagocytosis
- Low NK cell activity

- Ferritin >500
- Splenomegaly

Extended (Satellite) criteria for M-HLH: N=35

By permission, Dr. Daver.

Characteristics	Myeloid Malignancies	Lymphoid Malignancies	p-value
	(N=23)	(N=11)	
Age	66 [33 – 84]	47 [19 – 59]	<0.001
Male	15 (65)	10 (91)	0.21
Fever	21 (91)	10 (91)	>0.99
Splenomegaly	15 (65)	9 (82)	0.43
Hepatomegaly	11 (48)	4 (36)	0.71
CNS symptoms	16 (70)	10 (91)	0.22
Coagulopathy	17 (74)	7 (64)	0.69
Ferritin	75000 [5038 – 471540]	34100 [3059 – 232300]	0.11
LDH	11480 [1594 – 42000+]	4300 [833 – 42000+]	0.17
sIL-2R	5800 [749 – 127000]	16730 [6510 – 93800]	0.38
Fibrinogen	196 [41 – 615]	200 [27 – 325]	0.97
Triglycerides	290 [69 – 788]	418 [65 – 929]	0.03
Low NK cell	8/8 (100)	3/4 (75)	0.02
activity			
Clinical hepatitis	16 (70)	11 (100)	0.06
Nephritis	16 (70)	3 (27)	0.03
IFN-g	6 [0.3 - 340]	43 [9 - 262]	0.13
TNF-a	25 [2.8 – 288]	50 [6.8 - 454]	0.21
CRP	177 [18 – 338]	89 [38 - 232]	0.20
Hemophagocytosi	7/9 (78)	5/7 (71)	>0.99
S			
Response			0.39
CR+PR	5 (22)	3/8 (38)	
NR	18 (78)	5/8 (62)	

Characteristics by type of underlying malignancy

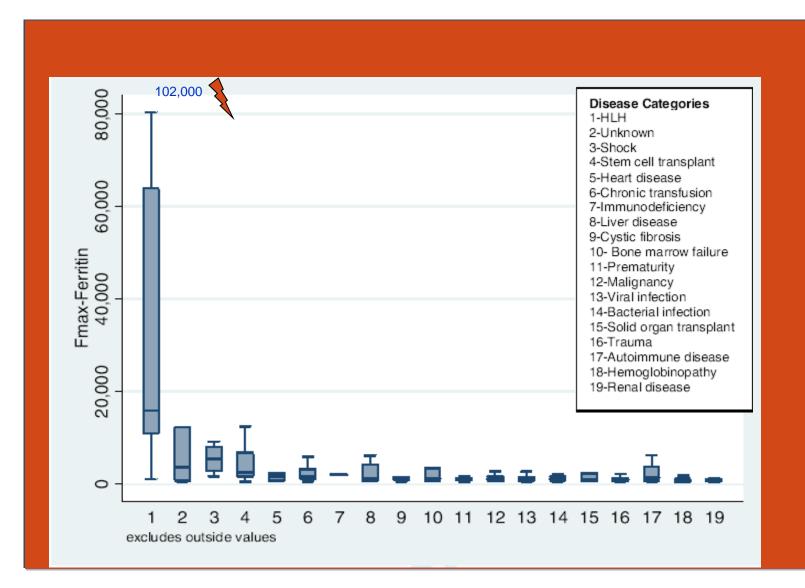
By permission, Dr. Daver.

WORK UP - HLH

- Ferritin
- IL2-R
- Triglycerides
- CBC
- LFTs
- Fibrinogen
- Bone marrow biopsy
- Viral studies

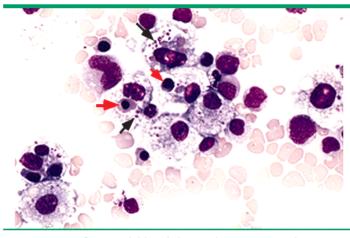
FERRITIN AND HLH

- Ferritin levels change dramatically in HLH; they usually do not behave this way in other conditions
- Rate of ferritin decline is a
 PROGNOSTIC MARKER
 - > 96% drop in 2 weeks 30% mortality
 - < 50% drop
 68% mortality



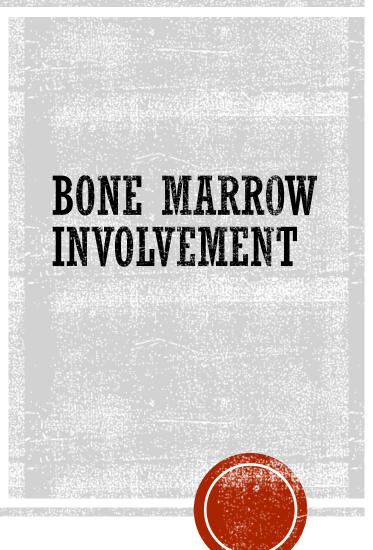
SERUM FERRITIN LEVELS IN HLH

- Very high serum ferritin is common in HLH
- In pediatric patients, >10,000 level was found to be 90% sensitive and 96 % specific
- Macrophages are a primary source of ferritin, which may account for the association between HLH and high ferritin levels.
- A protein responsible for iron hemostasis, called growth differentiation factor 15, is dramatically upregulated in patients with HLH and is responsible for increased serum ferritin



HLH-FERRITIN STUDY (PEDIATRICS)

Allen et al, 2007


Infection-associated hemophagocytic syndrome

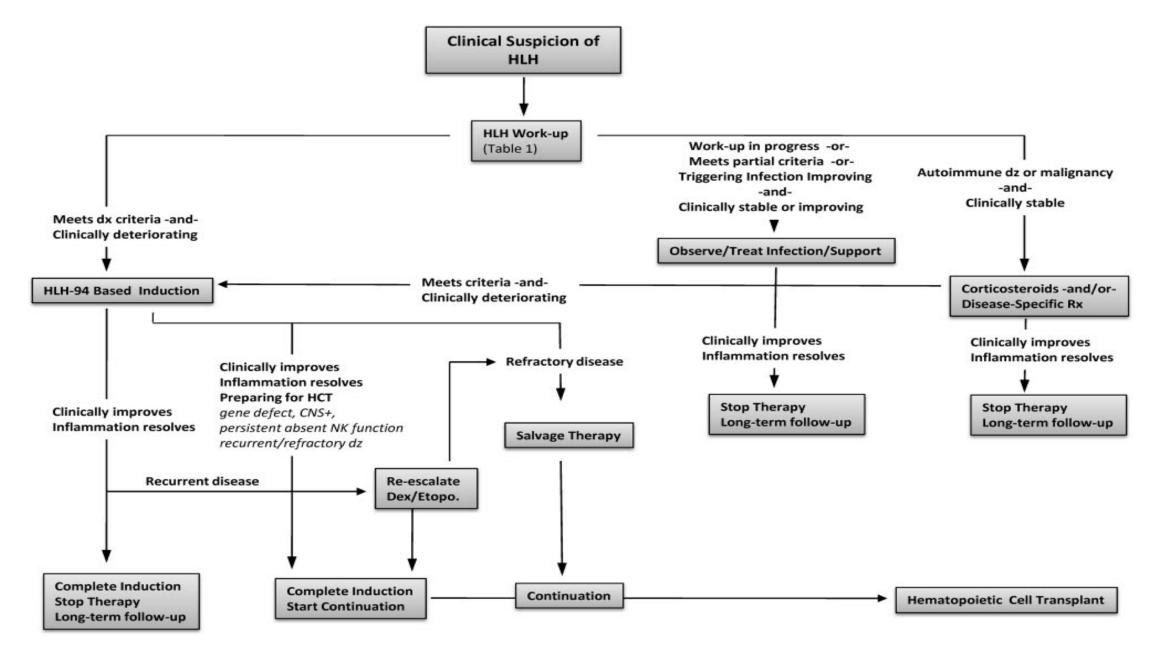
Bone marrow from a child with hemophagocytic syndrome, secondary to Epstein-Barr virus infection. Reactive histiocytes show phagocytosis of nucleated red blood cells (red arrows) and platelets (black arrows). Wright-Giemsa stain. From: Brunning RD, McKenna RW. Tumors of the bone marrow. Atlas of tumor pathology (electronic fascicle), Third series, fascicle 9, 1994, Washington, DC. Armed Forces Institute of Pathology.

UpToDate°

Copyrights apply

Brunning et al, Atlas of Tumor Pathology 2004.

O TREATMENT - HIH


Sandler et al, Frontiers in Immunology 2020

TREATMENT - HLH

- HLH-94 Protocol
 - Eight weeks of etoposide and dexamethasone
 - Intrathecal therapy (MTX) for those with CNS involvement
 - +/- cyclosporin (CSA) at week nine
 - SCT

- Trials/other regimens
 - HIT-HLH
 - NCT01104025
 - EURO-HIT-HLH
 - HLH-2004 (etoposide, dexamethasone and CSA initially
 - ATG, steroids, CSA, IT MTX
 - Cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP)
 - Doxorubicin, etoposide, methylprednisone (DEP)

ORIGINAL ARTICLE

Emapalumab in Children with Primary Hemophagocytic Lymphohistiocytosis

F. Locatelli, M.B. Jordan, C. Allen, S. Cesaro, C. Rizzari, A. Rao, B. Degar, T.P. Garrington, J. Sevilla, M.-C. Putti, F. Fagioli, M. Ahlmann, J.-L. Dapena Diaz, M. Henry, F. De Benedetti, A. Grom, G. Lapeyre, P. Jacqmin, M. Ballabio, and C. de Min

> **Emapalumab** is a human anti– interferon- γ antibody that binds free and receptor-bound interferon- γ and neutralizes its biologic activity

> Administered in Phase 2/3 trial along with dexamethasone.

Conclusions

- Neutralizing interferon-γ and controlling hyperinflammation with emapalumab were efficacious in previously treated children with primary HLH.
- Most patients who received emapalumab in the study proceeded to allogeneic hematopoietic stem-cell transplantation.
- Emapalumab was effective with a low level of toxic effects in patients with primary HLH.
- The study provides support for further investigation of emapalumab in patients with secondary forms of HLH.

EMAPALUMUMAB

 On November 20, 2018, the Food and Drug Administration approved emapalumab (GAMIFANT, Novimmune SA), a monoclonal antibody that binds and neutralizes interferon gamma, for adult and pediatric (newborn and older) patients with primary hemophagocytic lymphohistiocytosis (HLH) with refractory, recurrent or progressive disease or intolerance with conventional HLH therapy.

PROTOCOLS AT MDACC

- 2019-0362: Phase 2/3 Open-label Single Arm, Multicenter Study to Evaluate Emapalumab (monoclonal antibody that binds and neutralizes interferon gamma) in Patients with HLH
- 2014-0989: Phase 2: Alemtuzumab (monoclonal antibody that binds to CD52+) Etoposide & Dexamethasone
- Contact Dr. Naval Daver @ NDaver@mdanderson.org

MDACC HLH monitoring on therapy

Pre-Therapy/Within 3 days of diagnosis	Within 7 days	During Therapy	Daily	Weekly
Ferritin	EBV/CMV PCR	WBC	WBC	LP + CSF studies
CBC	HHV6 PCR	Hgb	Hgb	Cytokine 12
PT	Adenovirus PCR	Plt	Plt	Blood PCR (CMV/EBV)
PTT	CMV Serology	ANC	ANC	Lymphocyte subset
Fibrinogen	Leishmania Serology	AST	AST	Blood Cx
D-Dimer	HSV PCR	ALT	ALT	Immunoglobulins
AST	VZV Serology	Bili	Bili	Repeat Abnormal Imaging
ALT	Brucella Serology	Albumin	Albumin	
GGT	LP	Na	Na	
Bili	Brain MRI	Uric acid	Uric acid	
Albumin	PET CT Scan	LDH	LDH	
Na	CT (C/A/P)	Triglycerides	Triglycerides	
Uric acid	TTE/MUGA Scan	PT	PT	
LDH	HLA Typing	PTT	PTT	
Triglycerides	SCT consult	D-dimer	D-dimer	
Ferritin	Tissue Biopsy	Fibrinogen	Fibrinogen	
ANA Profile	Genetic studies	Ferritin	Ferritin	
Cytokine 12 panel	PPD	Cytokine 12		
soluble IL2R-alpha (sCD25)	HIV	Immunoglobulins		
sCD163		EBV/CMV PCR		
NK Function		Blood Cx		
T cell subsets		LP + CSF studies		
CD107 mobilization				
PRF1/Granzyme proteins				
Immunoglobulins				
LP + CSF studies				
Blood-cx				
BM + cx + PCR (EBV/CMV)				
Blood-PCR (EBV/CMV)				

Shah A, Daver N et al, BBA 2016

HIH PROGNOSIS

Sandler et al, Frontiers in Immunology 2020

PROGNOSIS – HLH IN ADULTS

- Prognosis is worse in those with:
 - underlying malignancy
 - older age

- Review of 162 adults with HLH poor prognostic factors
 - Lymphoma (especially T-cell)
 - Thrombocytopenia
 - Elevated AST/LDH
 - >50 yo

Study Number Most frequent associated 6-month Median of malignancy survival survival patients rate (months) AML/MDS (n=13), T-lymphoma 30% Tamamyam 35 2.0 et al.²⁶ (2016) (n=10), DLBCL (n=6), HL (n=6), CLL (n=4), CML (n=2), Follicular lymphoma (n=2) Parikh et 32 T-lymphoma (n=19), DLBCL (n=6), Not 1.4 al.²³ (2014) EBV-associated PTLD (n=3), HL reported (n=1), CMML (n=1), hemangioendothelioma (n=1), systemic histiocytosis (n=1) Otrock et B-neoplasms (n=10), T-neoplasms 21 20% 1.1 al.³³ (2015) (n=6), HL (n=3), AML (n=1), MDS (n=1) Lehmberg et 21 67% 1.2 T-neoplasms (n=12), B-neoplasms al.²⁵ (2015) (n=7) Machaczka 8 HL (n=2), MM (n=2), 1 each of B-38% 2.4 et al.¹⁰ (2011) CLL, PTCL, AILD, WM, ATL Shabbir et 6 AML (n=2), T-cell lymphoma (n=2), Not 1.2 (entire al.²⁴ (2011) post auto-SCT for MM (n=2) reported adult HLH cohort, n=18)

Adult M-HLH Outcomes at Major Centers

OCASE STUDIES

- 46 yo male from Florida diagnosed with multiple myeloma in 12/2015 status post multiple regimens of chemotherapy, autologous SCT 8/22/16, and haploidentical SCT 10/24/19. Complications: PE, BKV
- Brief admission at MDACC 11/21/19-11/24/19 due to severe HA and fever; PET showed new splenomegaly with avid lesions. Discharged with impression that HA was related to IVIG. CMV and EBV negative.
- PET 12/10/19 confirms relapsed MM
- Admission MDACC 12/31/19-1/12/20 for right facial pain; found to have right maxilla plasmacytoma. Received RT (1/3/20) x 8 and started C1 (1/4/20) of cyclophosphamide, carfilzomib, daratuzumab, dexamethasone and Fulphila.
- Admitted to Florida hospital 1/14/20-1/27/20; presented with NF (103), AMS and hypotension requiring low-dose pressor support in ICU. Placed on cefepime/vancomycin. EF noted to be 35%. Increased LFTs/TBil. Developed rash. RVP + adenovirus. Worsening AMS throughout. Due to concern for fungal infection, anidulafungin was started, but stopped due to rash.

- 1/27/20 transferred to MDACC from OSH.
 - ANC 0.3, Platelets 4
 - Tbil 21.7, ALKP 287, AST/ALT 131/67
 - Rash , AMS
 - ID consulted 1/28: mero/linezolid, LP, ACY for emperical HSV coverage, RVP
 - Ferritin level 43,247, IL 2 2223, Fibrinogen 722, Triglycerides 423, Adenovirus 4.7E+07 (11/4/10 neg), EBV neg, (12/19 < 400, 11/20 493)
 - Did not receive treatment for HLH due to rapid decline, worsening MOF
 - Expired within one month of hospitalization

- 20 yo from El Paso, TX oil field worker presented with CP, SOB, and pancytopenia found to have right mediastinal mass + mixed germ cell tumor. Transferred to MDACC for further management.
- ID consulted for NNF
- Exam: +HSM
- Labs: pancytopenia, Ferritin 9647, IL2R 35, triglycerides 156, BM: histoplasmosis, hemophagocyctic histiocytes
- Got etoposide x 2 doses with steroids, no improvement
- Patient expired after one month in hospital

- 61 y.o. female with EBV-related NHL diagnosed in 4/2019, s/p R-CHOP IT MTX on 5/13/19, evaluated at that time by ID for neutropenic fevers with unclear source. After further chemotherapy was undergoing evaluation for autologous SCT in 2/2019, at which time she was admitted for persistent fevers. Ferritin at that time noted to be newly elevated >1000. POD also noted so was started on RICE chemotherapy.
- Starting in 2/2020, patient had multiple admission for fevers, and ID were consulted multiple times for recurrent fevers, during this course her NHL progressed.
- 5/2020 serum EBV and CMV in bone marrow were elevated. BM pathology showed histiocytes with hemophagocytosis. +splenomegaly

Component	Latest Ref Rng & Units	5/4/2020 l	խ 5/12/2020	5/14/2020	5/16/2020	5/16/2020	5/16/2020	յի 5/18/2020	5/19/2020 Ju	5/19/2020	5/19/2020	5/20/2020 ຟຟ
					2:21 AM	2:44 AM	3:56 PM		3:21 AM	3:21 PM	6:25 PM	
Trig	<=149 mg/dL	310 (H)	=				426 (H)	=				
Ferritin Lvl	13 - 150 ng/mL	7,503 (H)	5,829 (H)	5,960 (H)		13,339 (H)	15,930 (H)		>100,000 (H)			>100,000 (H)
Fibrinogen	214 - 503 mg/dL	249			308		244	95 (L)	36 (C)	88 (L)	68 (C)	88 (L)
IL 2 Recp(CD25) Sol-Mayo	175.3 - 858.2 pg/mL						80444.0 (H)	=				

 She was treated with tocilizumab and high dose steroids, developed multiorgan failure and passed away.

- 45 yo from Houston, TX with PMH, HBV (treated), DM, HTN diagnosed/treated for DLBCL in 20s, remained in remission until 2015, while incarcerated developed fevers, night sweats and weight loss. Presented to MDACC in 10/2015 for management of sepsis/PNA in the setting of DLBCL relapse.
- ID consulted for NF, reactivation of HBV (DNA level 920,000)
- Ferritin peaked at 31,973, IL2R 13,518, WBC 0.7, triglycerides 279, fibrinogen 182
- Ferritin rapidly decreased following treatment for lymphoma
- Last seen in ID clinic for HBV follow-up in 12/2019 and is doing well.

THANK YOU, AUDIENCE

ADDITIONAL REFERENCES

- <u>Henter JI, Horne A, Aricó M, et al. HLH-2004: Diagnostic and therapeutic guidelines for</u> <u>hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007; 48:124.</u>
- <u>Filipovich A, McClain K, Grom A. Histiocytic disorders: recent insights into</u> <u>pathophysiology and practical guidelines. Biol Blood Marrow Transplant 2010; 16:S82.</u>
- <u>Henter JI, Elinder G, Söder O, et al. Hypercytokinemia in familial hemophagocytic</u> <u>lymphohistiocytosis. Blood 1991; 78:2918.</u>
- Jordan MB, Allen CE, Weitzman S, et al. How I treat hemophagocytic lymphohistiocytosis. Blood 2011; 118:4041. Ramos-Casals M, Brito-Zerón P, López-Guillermo Å, et al. Adult haemophagocytic syndrome. Lancet 2014; 383:1503.
- Shah AR, Muzzafar T, Assi Ret al <u>Hemophagocytic lymphohistiocytosis in adults: An under recognized entity</u>. BBA Clin. 2016 Dec 20;7:36-40.
- Daver N, McClain K, Allen CE, et al. <u>A consensus review on malignancy-associated</u> <u>hemophagocytic lymphohistiocytosis in adults.</u> Cancer. 2017 Sep 1;123(17):3229-3240

