Best of ASCO 2022

Lymphoid Malignancies

Mazyar Shadman, MD MPH

Associate Professor,
Fred Hutch Cancer Center and University of Washington
Seattle, WA

Disclosures

- Consulting, Advisory Boards, steering committees or data safety
 monitoring committees: Abbvie, Genentech, AstraZeneca, Sound
 Biologics, Pharmacyclics, Beigene, Bristol Myers Squibb, Morphosys/Incyte,
 TG Therapeutics, Innate Pharma, Kite Pharma, Adaptive Biotechnologies,
 Epizyme, Eli Lilly, Adaptimmune, Mustang Bio, Regeneron, Merck, Fate
 therapeutics, MEI pharma and Atara Biotherapeutic.
- Research Funding: Mustang Bio, Celgene, Bristol Myers Squibb, Pharmacyclics, Gilead, Genentech, AbbVie, TG Therapeutics, Beigene, AstraZeneca, Sunesis, Atara Biotherapeutics, Genmab, Morphosys/Incyte

Selected studies

1. Hodgkin Lymphoma: Brentuximab-vedotin + chemo for first line (ECHELON-1)

2. CLL: Ibrutinib and Venetoclax for first line (CAPTIVATE FD)

3. Mantle cell: Ibrutinib and BR for first line (SHINE)

FIRST-LINE BRENTUXIMAB VEDOTIN PLUS CHEMOTHERAPY IMPROVES OVERALL SURVIVAL IN PATIENTS WITH STAGE III/IV CLASSICAL HODGKIN LYMPHOMA: AN UPDATED ANALYSIS OF ECHELON-1

Stephen M. Ansell, John Radford, Joseph M. Connors, Won-Seog Kim, Andrea Gallamini, Radhakrishnan Ramchandren, Jonathan W. Friedberg, Ranjana Advani, Martin Hutchings, Andrew M. Evens, Piotr Smolewski, Kerry J. Savage, Nancy L. Bartlett, Hyeon-Seok Eom, Jeremy S. Abramson, Cassie Dong, Frank Campana, Keenan Fenton, Markus Puhlmann, and David J. Straus, for the ECHELON-1 Study Group

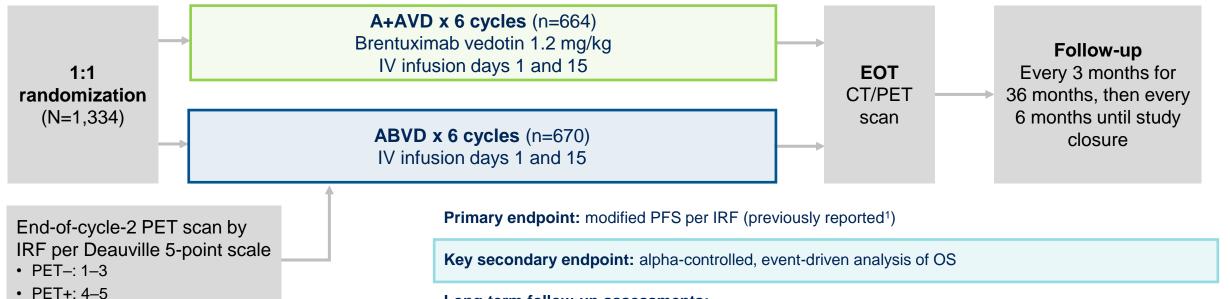
Stephen M. Ansell

Division of Hematology, Mayo Clinic, Rochester, MN, USA

Background

- For the last decade, standard treatments (e.g., ABVD) have set a high bar for survival for patients with advanced cHL, in part due to the improved ability to salvage patients who relapse¹
- Although various approaches including PET-adapted strategies and BEACOPP-based regimens have succeeded in improving tolerability or disease control versus ABVD, none have yet shown a meaningful OS advantage²
- In the phase 3 ECHELON-1 study (NCT01712490), analyses after a 5-year follow-up supported a long-term PFS benefit with first-line A+AVD vs ABVD³
- Here we report an alpha-controlled, prespecified OS analysis for patients in the ECHELON-1 study after approximately 6 years follow-up, as well as updates to long-term safety outcomes: second malignancies, pregnancies, and PN

A+AVD, brentuximab vedotin + doxorubicin, vinblastine, and dacarbazine; ABVD, doxorubicin, bleomycin, vinblastine, and dacarbazine; BEACOPP, bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone; cHL, classical Hodgkin lymphoma; OS, overall survival; PET, positron emission tomography; PFS, progression-free survival; PN, peripheral neuropathy.


- 1. Canellos GP, et al. N Engl J Med 1992;327:1478–84.
- 2. Kreissl S, et al. Lancet Haematol 2021;8:e398–409.
- 3. Straus DJ, et al. Lancet Haematol 2021;8:e410-21.

Phase 3 ECHELON-1 study design

Long-term follow-up assessments:

- Exploratory analysis of OS among patients who were PET2-positive and PET2-negative
- PFS per investigator
- · Subsequent treatment use
- Safety outcomes including:
 - Second malignancies
 - Outcomes of pregnancy among patients and their partners
 - PN resolution and improvement rates

Data cut-off for current analysis, June 1, 2021.

CT, computerized tomography; EOT, end of treatment; IRF, independent review facility; ITT, intention to treat; IV, intravenous; PET2, PET status at the end of cycle 2.

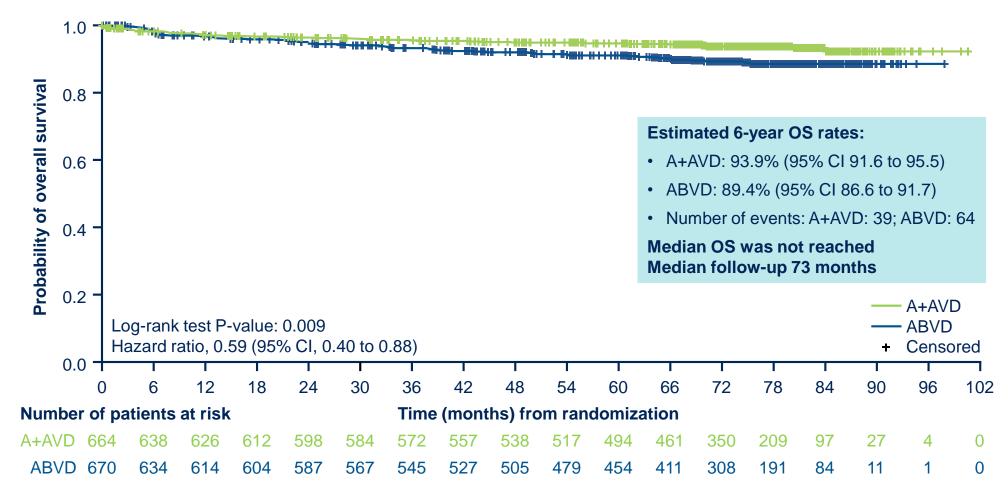
1. Connors JM, et al. N Engl J Med 2018;378:331-44.

Key patient characteristics in ECHELON-1¹

Characteristic	A+AVD (n=664)	ABVD (n=670)	Total (N=1,334)
Male sex, n (%)	378 (57)	398 (59)	776 (58)
Median age, years (interquartile range)	35 (26 to 51)	37 (27 to 53)	36 (26 to 52)
Aged <60 years, n (%)	580 (87)	568 (85)	1148 (86)
Aged ≥60 years, n (%)	84 (13)	102 (15)	186 (14)
Ann Arbor stage at initial diagnosis — n (%)*			
Stage II [†]	1 (<1)	0	1 (<1)
Stage III	237 (36)	246 (37)	483 (36)
Stage IV	425 (64)	421 (63)	846 (64)
Not applicable/unknown/missing	1 (<1)	3 (<1)	4 (<1)
IPS‡, n (%)			
0–1	142 (21)	141 (21)	283 (21)
2–3	355 (53)	357 (53)	712 (53)
4–7	167 (25)	172 (26)	339 (25)
PET2 status#, n (%)			
Positive	47 (7)	58 (9)	105 (8)
Negative	588 (89)	578 (86)	1166 (87)
Unknown/unavailable	29 (4)	34 (5)	63 (5)

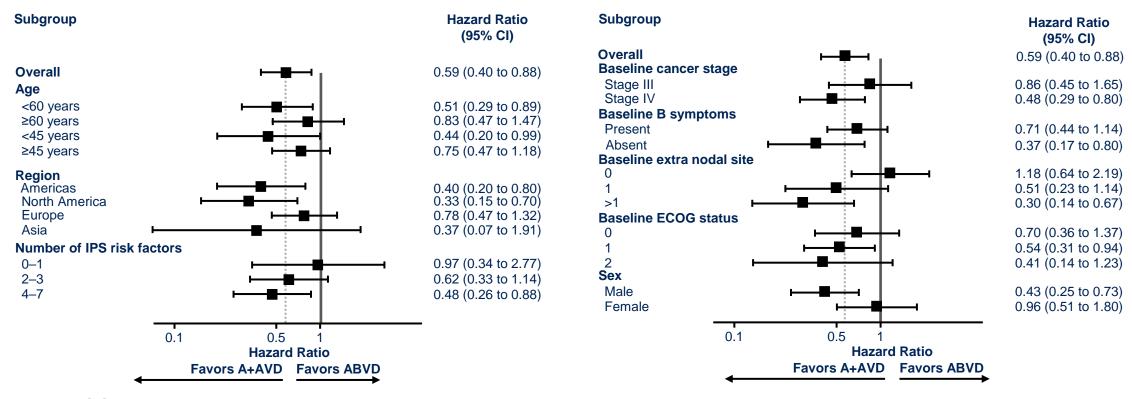
^{*}The Ann Arbor staging system ranges from I to IV, with higher stages indicating more widespread disease; †Patients in this category have major protocol violation;

IPS; International Prognostic Score.


1. Straus DJ, et al. Lancet Haematol 2021;8:e410-21.

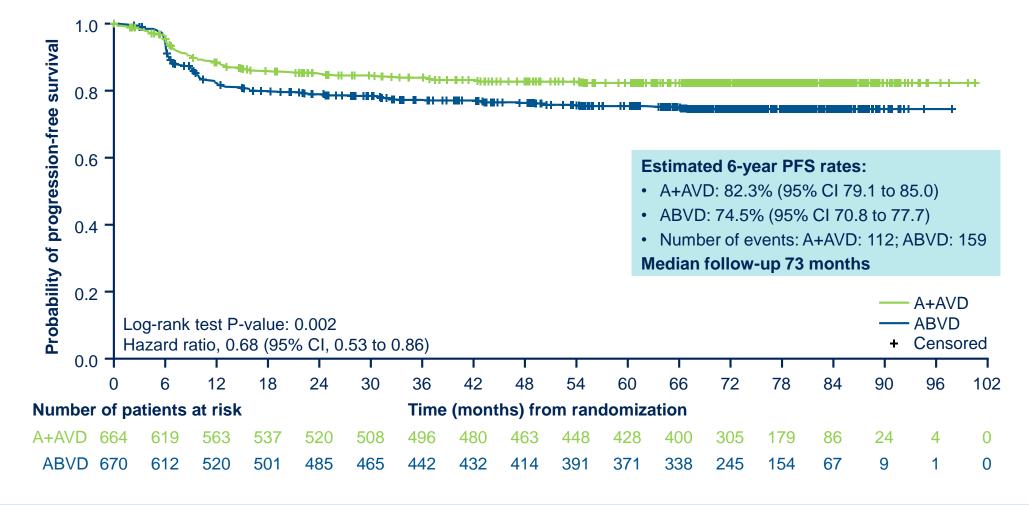
[‡]The IPS ranges from 0 to 7, with higher scores indicating increased risk of treatment failure: low-risk, 0–1; intermediate-risk, 2–3; high-risk, 4–7; #PET status was assessed at post-index whereas other patient characteristics were assessed at baseline.

A+AVD significantly improved OS with a 41% reduction in risk of death compared with ABVD



CI. confidence interval.

OS benefit was generally consistent across subgroups


- The OS benefit with A+AVD was preserved in a multivariable analysis when simultaneously adjusting for baseline demographic and disease factors (HR 0.53; 95% CI, 0.34 to 0.83)
 - Age, non-white race, ECOG performance status score, and PET2 status were identified as the covariates with greatest evidence of association with overall survival

ECOG, Eastern Cooperative Oncology Group.

A+AVD reduced the risk of progression or death by 32% when compared with ABVD

Fewer patients died from HL and disease- or treatmentrelated complications with A+AVD vs ABVD

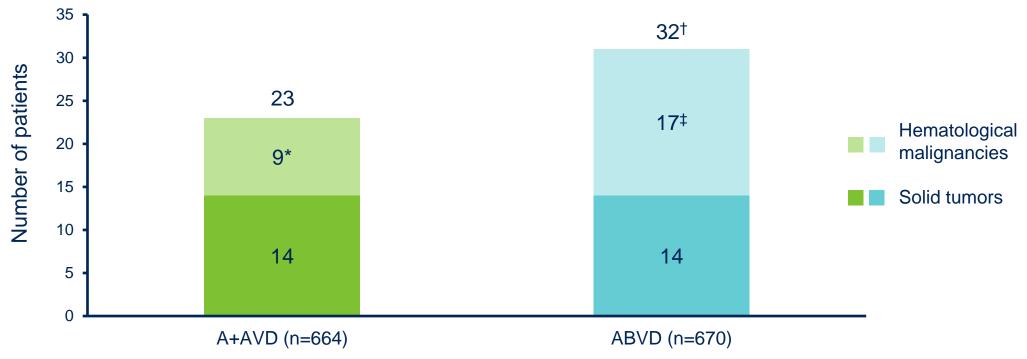
Cause of death per investigator	A+AVD (n=662)	ABVD (n=659)
Total Deaths	39 (5.9%)	64 (9.7%)
Hodgkin lymphoma or complications	32	45
Second malignancies	1	11
Other causes	6	8
Unknown cause	1	5*
Accident or suicide	3	0
COVID-19	0	1
Heart failure	1	1
Intracranial hemorrhage	1	0
Lower respiratory tract infection	0	1

^{*}In 2 patients in the ABVD arm, death was reported to be of indeterminate cause, but the event occurred following investigator-documented disease progression.

Among those who died:

- A+AVD: 19 patients had prior disease progression (not always the cause of death); 18 received subsequent therapy
- ABVD: 28 patients had prior disease progression, 25 received a subsequent therapy (13 received brentuximab vedotin)

Use of subsequent therapy was less common with A+AVD versus ABVD (safety population)


	A+AVD	ABVD	Total
	n=662	n=659	N=1,321
Patients with ≥1 subsequent anticancer therapy, n (%)	135 (20)	157 (24)	292 (22)
Type of therapy, n (%)			
Brentuximab vedotin or chemotherapy regimens	78 (12)	108 (16)	186 (14)
Brentuximab vedotin monotherapy	8 (1)	49 (7)	57 (4)
Brentuximab vedotin + chemotherapy	2 (<1)	20 (3)	22 (2)
Radiation	54 (8)	54 (8)	108 (8)
Chemotherapy + radiation	1 (<1)	4 (<1)	5 (<1)
High-dose chemotherapy + transplant	44 (7)	59 (9)	103 (8)
Allogeneic transplant	4 (<1)	12 (2)	16 (1)
Immunotherapy*	18 (3)	24 (4)	42 (3)
Brentuximab vedotin + nivolumab	0 (0)	4 (<1)	4 (<1)
Nivolumab	15 (2)	18 (3)	33 (2)
Pembrolizumab	2 (<1)	6 (<1)	8 (<1)
Nivolumab combinations	1 (<1)	1 (<1)	2 (<1)
Other	0 (0)	1 (<1)	1 (<1)

^{*}Immunotherapy was based predominantly on anti-PD-1 agents.

Fewer second malignancies were reported in the A+AVD vs ABVD arm, consistent with prior reports¹

*Includes 2 cases of acute myeloid leukemia and 6 cases of B- or T-cell lymphomas; †Includes 1 unknown malignancy; ‡Includes 1 case each of acute myeloid leukemia, acute promyelocytic leukemia, and myelodysplastic syndrome, and 13 cases of B- or T-cell lymphomas.

- Among patients with second malignancies:
 - Two patients on each arm received transplant
 - Three patients on the ABVD arm received prior radiation (none with A+AVD)

1. Straus DJ, et al. Lancet Haematol 2021;8:e410–21.

Pregnancy and peripheral neuropathy data consistent with prior reports

Pregnancies

- Fertility was not formally assessed
- A total of 191 pregnancies were reported among patients and their partners (A+AVD: 113; ABVD: 78)
 - Among female patients with A+AVD and ABVD:
 - Pregnancies: 49 and 28
 - Live births*: 56 and 23
 - Among partners of male patients with A+AVD and ABVD:
 - Pregnancies: 33 and 33
 - Live births*: 40 and 36
 - No still births were reported in either arm

Peripheral neuropathy

- Incidence of PN at 2 years of follow-up was greater with A+AVD (67%) vs ABVD (43%)¹
- In patients with PN in the A+AVD and ABVD arms, after 6 years follow-up:
 - Treatment-emergent PN either resolved or continued to improve[†] in 86% and 87%
 - Median time to resolution was 16 and 10 weeks

Safety population	A+AVD (n=662)	ABVD (n=659)
Patients with ongoing PN at last follow-up, n (%)	125 (19)	59 (9)
Grade 1	71 (11)	39 (6)
Grade 2	38 (6)	16 (2)
Grade 3 [‡]	15 (2)	4 (<1)
Grade 4 [‡]	1 (<1)	0

^{*}Some female patients (13 on the A+AVD arm and 3 on the ABVD arm)/partners of male patients (8 on the A+AVD arm and 7 on the ABVD arm) recorded more than one live birth; †Resolution was defined as resolved/recovered with or without sequelae or return to baseline or lower severity as of the latest assessment for pre-existing events. Improvement was defined as resolution or a decrease by at least 1 grade from the worst grade with no higher grade thereafter; ‡Patients who were lost to follow-up or died prior to resolution or improvement were not censored (11/16 patients [including the 1 patient with Grade 4 PN] on the A+AVD arm; 4/4 on the ABVD arm).

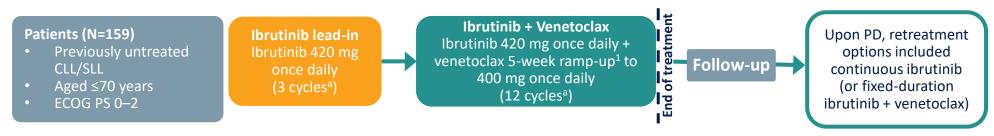
1. Connors JM, et al. N Engl J Med 2018;378:331-44.

Conclusions

- A+AVD is the first regimen to show an improvement in OS versus classic ABVD in patients with previously untreated advanced cHL
- A+AVD improved OS versus ABVD despite the wide availability and use of active salvage therapies, including substantial use of subsequent brentuximab vedotin in the ABVD arm
- The OS benefit with A+AVD was coupled with fewer second malignancies vs ABVD
- The observed OS benefit with A+AVD, fewer disease-related deaths, and a concomitant reduction in disease progression, suggests that A+AVD has potentially cured more patients of their disease
- Based on these data, A+AVD should be considered a preferred first-line treatment option for patients with previously untreated stage III or IV cHL

Discussion points: ECHELON-1 Study

- 1. Subsequent treatments
- 2. Causes of death
- 3. Practice changing?


Fixed-duration (FD) ibrutinib + venetoclax for first-line treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma: 3-year follow-up from the FD cohort of the phase 2 CAPTIVATE study

William G. Wierda, MD, PhD¹; Paul M. Barr, MD²; Tanya Siddiqi, MD³; John N. Allan, MD⁴; Thomas J. Kipps, MD, PhD⁵; Livio Trentin, MD⁶; Ryan Jacobs, MD⁷; Sharon Jackson, MD®; Alessandra Tedeschi, MD⁰; Stephen Opat, FRACP, FRCPA, MBBS¹⁰; Rajat Bannerji, MD, PhD¹¹; Bryone J. Kuss, MBBS, PhD, FRACP, FRCPA¹²; Carol Moreno, MD, PhD¹³; Lisa J. Croner¹⁴, ¹⁵; Edith Szafer-Glusman, PhD¹⁴,¹⁵; Cathy Zhou, MS¹⁵; Anita Szoke, MD¹⁵; James P. Dean, MD, PhD¹⁵; Paolo Ghia, MD, PhD¹⁶; Constantine S. Tam, MBBS, MD¹⊓

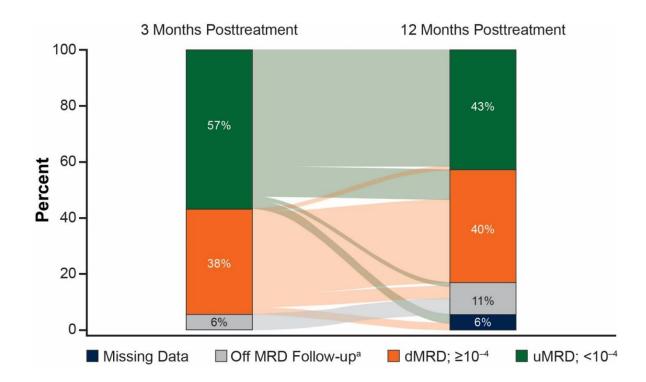
¹Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; ³City of Hope National Medical Center, Duarte, CA, USA; ⁴Weill Cornell Medicine, New York, NY, USA; ⁵UCSD Moores Cancer Center, La Jolla, CA, USA; ⁶University of Padova, Padova, Italy; ⁷Levine Cancer Institute, Charlotte, NC, USA; ⁸Middlemore Hospital, Auckland, New Zealand; ⁹ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁰Monash University, Clayton, VIC, Australia; ¹¹Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; ¹²Flinders University and Medical Center, Bedford Park, SA, Australia; ¹³Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain; ¹⁴AbbVie Company, North Chicago, IL, USA; ¹⁵Pharmacyclics LLC, an AbbVie Company, South San Francisco, CA, USA; ¹⁶Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy; ¹⁷Peter MacCallum Cancer Center & St. Vincent's Hospital and the University of Melbourne, Melbourne, VIC, Australia

CAPTIVATE FD Cohort Study Design and Disposition

3-year follow up data from the FD cohort of CAPTIVATE are presented. CAPTIVATE is an international, multicenter phase 2 study evaluating first-line treatment with 3 cycles of ibrutinib followed by 12 cycles of combined ibrutinib + venetoclax

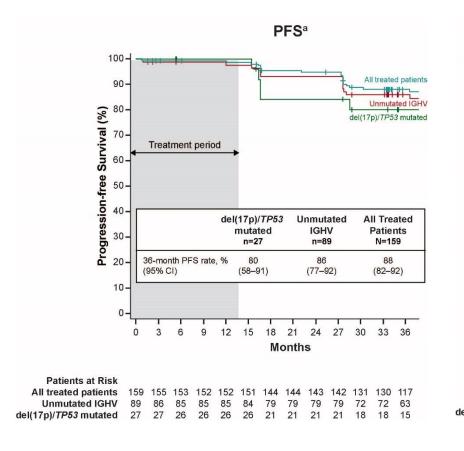
- Median time on study: 38.7 months (range, 0.8–41.4)
 - 92% completed planned 12 cycles of combined ibrutinib + venetoclax²
 - Median treatment duration: 13.8 months (range, 0.5–24.9), equivalent to fifteen 28-day cycles²
- Median of 25 months follow-up after completion of FD therapy
- Baseline characteristics have been previously published²

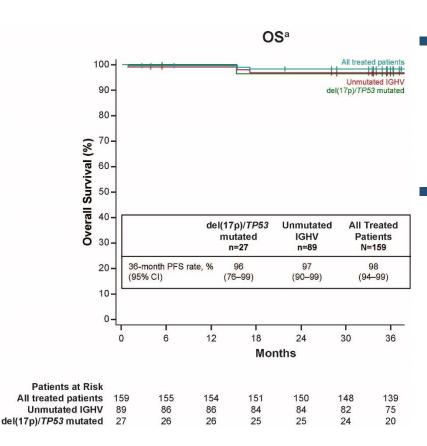
ALC, absolute lymphocyte count; ECOG PS, Eastern Cooperative Oncology Group performance status; FD, fixed-duration; PD, progressive disease; SLL, small lymphocytic lymphoma.


- ^a1 cycle = 28 days; ^bWithout del(17p) per Dohner hierarchy; ^cDefined as ≥3 abnormalities by conventional CpG-stimulated cytogenetics.
- 1. VENCLEXTA (venetoclax tablets) for oral use [package insert]. South San Francisco, CA: Genentech USA Inc; 2021. 2. Tam CS et al. Blood. 2022; doi: 10.1182/blood.2021014488.

Key Characteristics ²	All treated patients N=159
Median age, years (range)	60 (33–71)
High-risk features, n (%)	
Unmutated IGHV	89 (56)
del(17p)/TP53 mutation	27 (17)
del(17p)	20 (13)
del(11q) ^b	28 (18)
Complex karyotype ^c	31 (19)
Lymph node diameter ≥5 cm, n (%)	48 (30)
Median ALC × 10 ⁹ /L (range)	70 (1–503)
ALC ≥25 × 10 ⁹ /L, n (%)	120 (75)

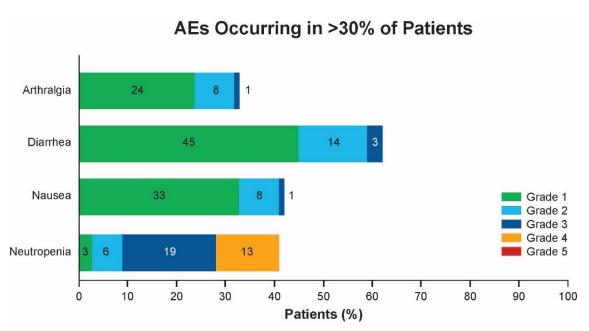
With An Additional Year of Off-treatment Follow-up Since the Primary Analysis, Rates of CR and Undetectable MRD Remained High


- The CR rate in all treated patients increased from 55% (95% CI, 48–63) at primary analysis to 57% (95% CI, 50–65) with an additional year of follow-up off treatment
- 79% of patients (125/159) had a best response of uMRD in PB and/or BM


 Of patients with uMRD in PB at 3 months posttreatment, 78% (66/85) of evaluable patients maintained uMRD through 12 months posttreatment

^aOff MRD Follow-up included patients who met any one of the criteria: progressive disease, initiation of subsequent therapy, death, or withdrawal from study.

With An Additional Year of Off-treatment Follow-up Since the Primary Analysis, Ibrutinib + Venetoclax Continued to Provide High Rates of PFS and OS



- The estimated 36-mo PFS rate was 88%
 - Similar rates in patients with del(17p)/TP53 mutated (80%) or unmutated IGHV (86%)
- The estimated 36-mo OS rate was 98%
 - Similar rates in patients with del(17p)/TP53 mutated (96%) or unmutated IGHV (97%)

^aDue to rapid enrollment in the study, the number of patients at risk drops substantially between 36 and 39 months. The Kaplan-Meier curves have therefore been truncated at 38 months due to instability of the curves.

Retreatment With Single-Agent Ibrutinib Elicits Promising Responses; Onset and Resolution of Frequently Occurring AEs

- Retreatment: 12 patients who progressed after FD treatment with ibrutinib + venetoclax have been retreated with single-agent ibrutinib, with duration of retreatment ranging from 6–32 months
 - 11/12 patients were evaluable for response, with 9 achieving PR, 1 PR-L and 1 achieving SD
- Most frequently occurring AEs (>30% of patients) were grade 1-2, occurred within 4 months of treatment initiation, and resolved

AE (occurring in >30% of patients)	Median time to first onset (range), days	Median time from onset to resolution or improvement (range), days	Resolution rate (%)
Arthralgia	30 (1-449)	42.5 (1-1187)	87
Diarrhea	102 (1-475)	16.5 (1-587)	95
Nausea	100 (1-412)	40.5 (1-676)	96
Neutropenia	127 (21-338)	17 (1-757)	100

Conclusions

- FD ibrutinib + venetoclax continues to demonstrate deep, durable responses and clinically meaningful PFS rate of 88% at 3 years, including PFS rates ≥80% in patients with del(17p)/TP53 mutated or unmutated IGHV
- With an additional year of follow-up, no additional OS events occurred
- The safety profile is manageable and unchanged from that previously reported. Most frequently occurring AEs were low-grade, had onset within 4 months of treatment start, and high rates of improvement or resolution
- Early data suggest that patients who progress after FD treatment with ibrutinib + venetoclax can be successfully retreated with single-agent ibrutinib
- Ibrutinib + venetoclax represents an efficacious, all-oral, once-daily, chemotherapy-free FD regimen for previously untreated patients with CLL/SLL

Discussion points : CAPTIVATE FD

1. Practice changing?

Primary Results From the Double-Blind, Placebo-Controlled, Phase III SHINE Study of Ibrutinib in Combination With Bendamustine-Rituximab and Rituximab Maintenance as a First-Line Treatment for Older Patients With Mantle Cell Lymphoma

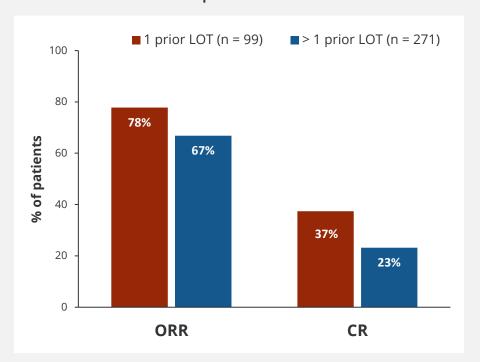
Michael L. Wang,¹ Wojciech Jurczak,² Mats Jerkeman,³ Judith Trotman,⁴ Pier Luigi Zinzani,⁵ Jan Walewski,⁶ Jun Zhu,⁷ Stephen E. Spurgeon,⁸ Andre Goy,⁹ Paul A. Hamlin,¹⁰ David Belada,¹¹ Muhit Özcan,¹² John M. Storring,¹³ David Lewis,¹⁴ José-Ángel Hernández-Rivas,¹⁵ Todd Henninger,¹⁶ Sanjay Deshpande,¹⁶ Rui Qin,¹⁶ Steven Le Gouill*,¹⁷ Martin Dreyling*¹⁸

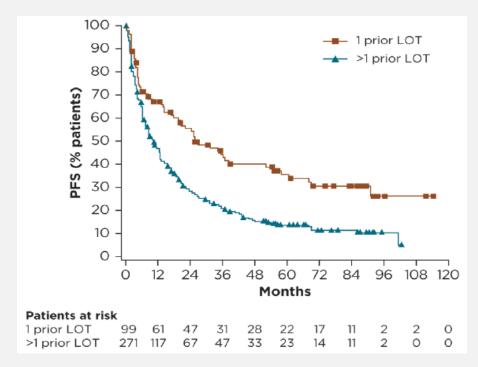
¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland; ³Skane University Hospital and Lund University, Lund, Sweden; ⁴Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; ⁵IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy; ⁶Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland; ¬Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute (Beijing Cancer Hospital), Beijing, China; ⁶Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA; ⁶John Theurer Cancer Center, Hackensack, NJ, USA; ¹¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹¹4th Department of Internal Medicine - Haematology, Charles University, Hospital and Faculty of Medicine, Hradec Králové, Czech Republic; ¹²Ankara University School of Medicine, Ankara, Turkey; ¹³The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; ¹⁴University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom; ¹⁵Department of Hematology, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain; ¹⁶Janssen Research & Development, Raritan, NJ, USA; ¹¬Institut Curie Comprehensive Cancer Center, Paris, France; Hospitalier Universitaire de Nantes at the time of the present work; ¹⁶Klinikum der Universität München, LMU, Munich, Germany.

*Professors Le Gouill and Dreyling contributed equally.

https://www.congresshub.com/Oncology/ AM2022/Ibrutinib/Wang

Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.


BR as First-line MCL Treatment in Older Patients


- Older patients with newly diagnosed mantle cell lymphoma (MCL) are usually treated with chemo-immunotherapy regimens such as bendamustine-rituximab (BR), R-CHOP, or VR-CAP¹⁻⁴
 - BR has become the most commonly used first-line regimen⁵
- BR alone:
 - Improved progression-free survival (PFS) compared with R-CHOP (35 vs 22 months)⁶ and has a better safety profile^{6,7}
- BR with rituximab maintenance:
 - Significantly improved PFS compared with BR alone in 2 independent real world studies^{5,8}

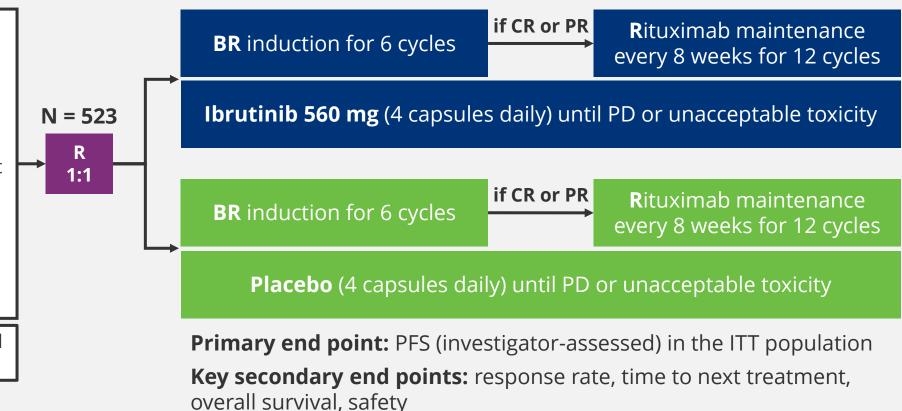
Ibrutinib Is a First-in-Class Once-Daily BTK Inhibitor

• Ibrutinib has transformed the care of patients with relapsed/refractory MCL; it is particularly effective and durable at first relapse¹⁻⁵

• Ibrutinib + BR has demonstrated activity in first-line MCL in a phase 1b study⁶

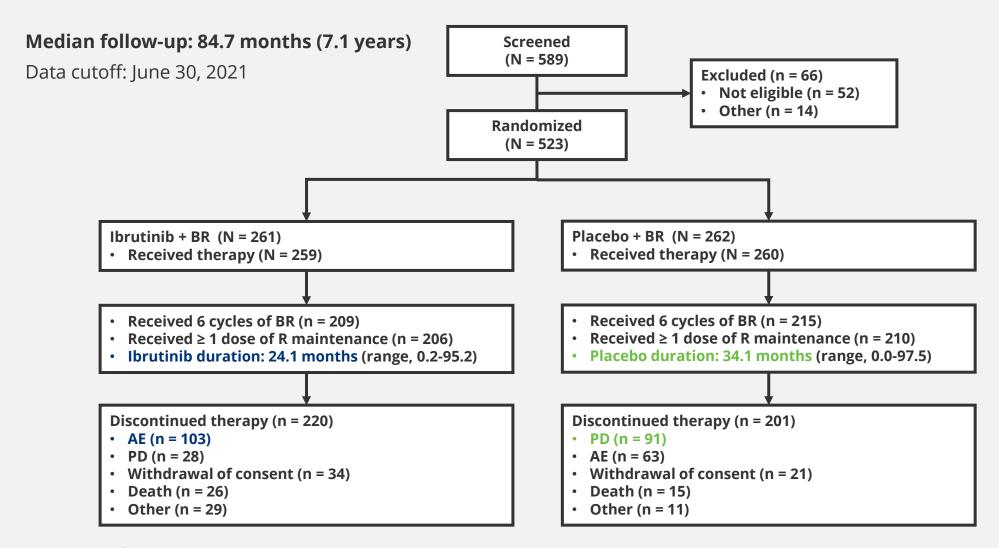
5. Dreyling M, et al. HemaSphere. 2022;6:e712. 6. Maddocks K, et al. Blood. 2015;125:242-248.

SHINE: A Randomized, Double-Blind, Phase III Study

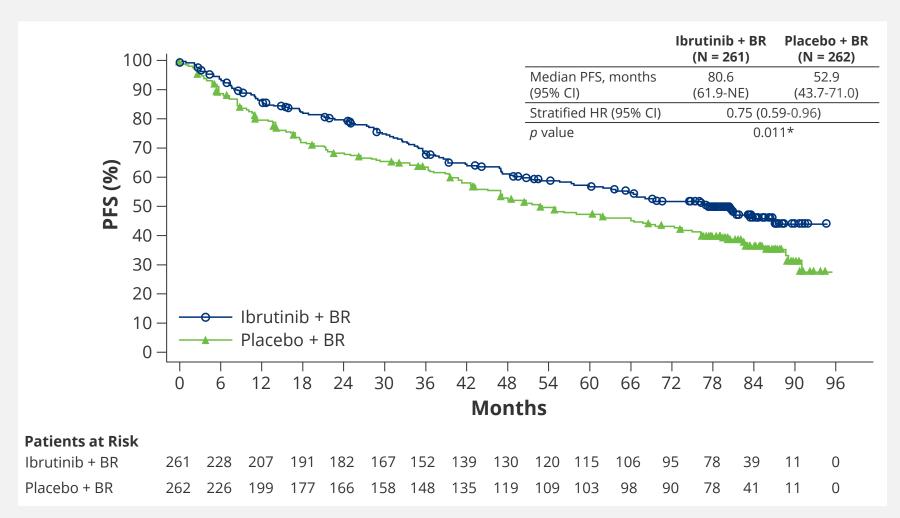

Patients

- Previously untreated MCL
- ≥ 65 years of age
- Stage II-IV disease
- No planned stem cell transplant

Stratification factor


 Simplified MIPI score (low vs intermediate vs high)

Enrolled between May 2013 and November 2014 at 183 sites


Patient Disposition and Treatment Exposure

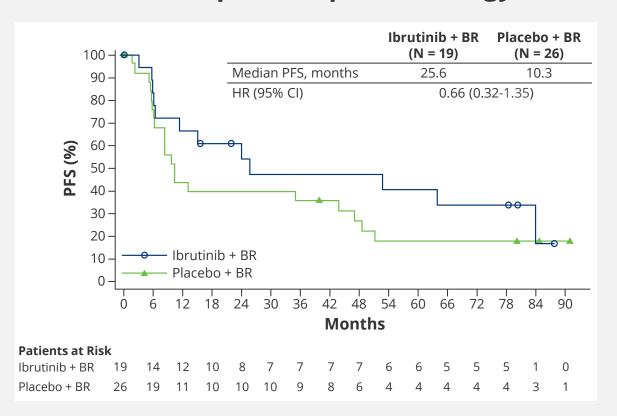
Baseline Characteristics

		lbrutinib + BR (N = 261)	Placebo + BR (N = 262)	
Median age (rang	ge), years	71 (65-86)	71 (65-87)	
≥ 75 years, n (%)		74 (28.4)	82 (31.3)	
Male, n (%)		178 (68.2)	186 (71.0)	
ECOG PS 1, n (%)		127 (48.7)	118 (45.0)	
C. I.C. LANDI	Low risk	44 (16.9)	46 (17.6)	
Simplified MIPI, n (%)	Intermediate risk	124 (47.5)	129 (49.2)	
11 (70)	High risk	93 (35.6)	87 (33.2)	
Bone marrow inv	olvement, n (%)	198 (75.9)	200 (76.3)	
Blastoid/pleomo	rphic histology, n (%)	19 (7.3)	26 (9.9)	
Extranodal, n (%)		234 (89.7)	226 (86.3)	
Bulky (≥ 5 cm), n	(%)	95 (36.4)	98 (37.4)	
TP53 mutated, n (%)		26 (10.0)	24 (9.2)	
TP53 mutation st	atus unknown, n (%)	121 (46.4)	133 (50.8)	

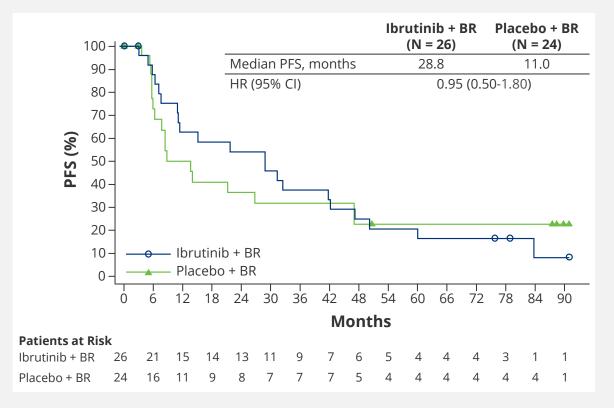
Primary End Point of Improved PFS Was Met

Ibrutinib + BR and R maintenance achieved:

- Significant improvement in median PFS by 2.3 years (6.7 vs 4.4 years)
- 25% reduction in risk of PD or death

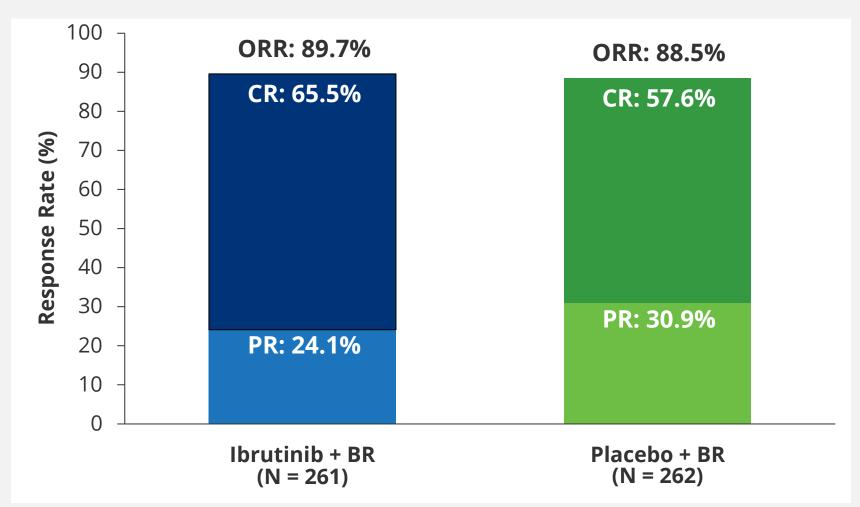

PFS Hazard Ratio in Subgroups

Characteristic, n/N	<u> Ibrutinib + BR</u>	<u>Placebo + BR</u>	1	Hazard Ratio (HR)	<u>95% CI</u>
All patients	116/261	152/262		0.75	0.59-0.96
Sex					
Male	88/178	111/186	<u> </u>	0.77	0.58-1.02
Female	28/83	41/76		0.65	0.40-1.06
Race					
White	92/199	118/206	<u> </u>	0.78	0.60-1.03
Non-white	24/62	34/56	.	0.59	0.35-1.00
Age					
< 70 years	39/99	62/108	——	0.67	0.45-0.99
≥ 70 years	77/162	90/154	<u> </u>	0.78	0.58-1.06
ECOG PS					
0	53/134	72/141	———	0.69	0.49-0.99
1-2	63/127	80/121	<u> </u>	0.77	0.56-1.08
Simplified MIPI at baseline					
Low risk (0-3)	15/44	21/46		0.85	0.44-1.65
Intermediate risk (4-5)	42/124	76/129	—	0.50	0.34-0.73
Low/intermediate risk (0-5)	57/168	97/175		0.57	0.41-0.78
High risk (6-11)	59/93	55/87		1.02	0.71-1.48
Tumor bulk					
< 5 cm	64/165	90/163	———	0.71	0.51-0.97
≥ 5 cm	51/95	62/98		0.78	0.54-1.13
			0.4 0.6 0.8 1.0 1.4 1	.8	
			Favors Ibrutinib + BR Favors Place	ebo + BR	

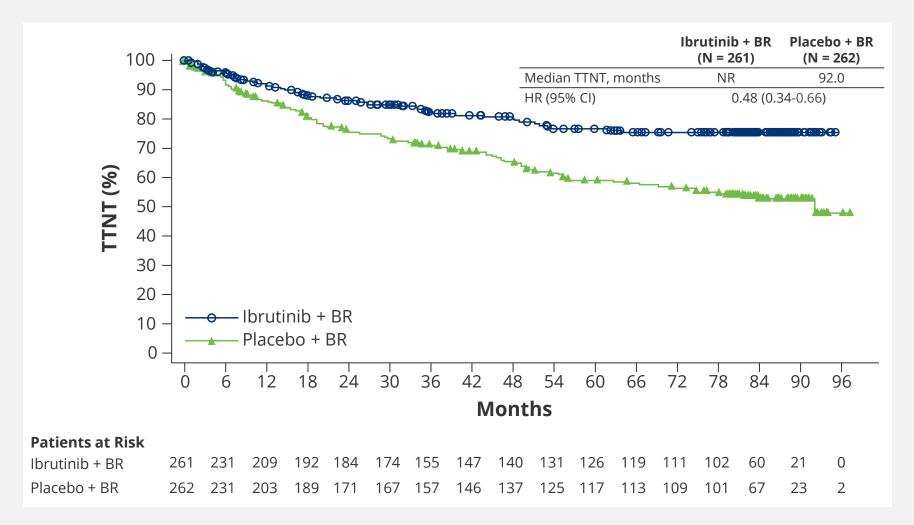


PFS in High-Risk Subgroups

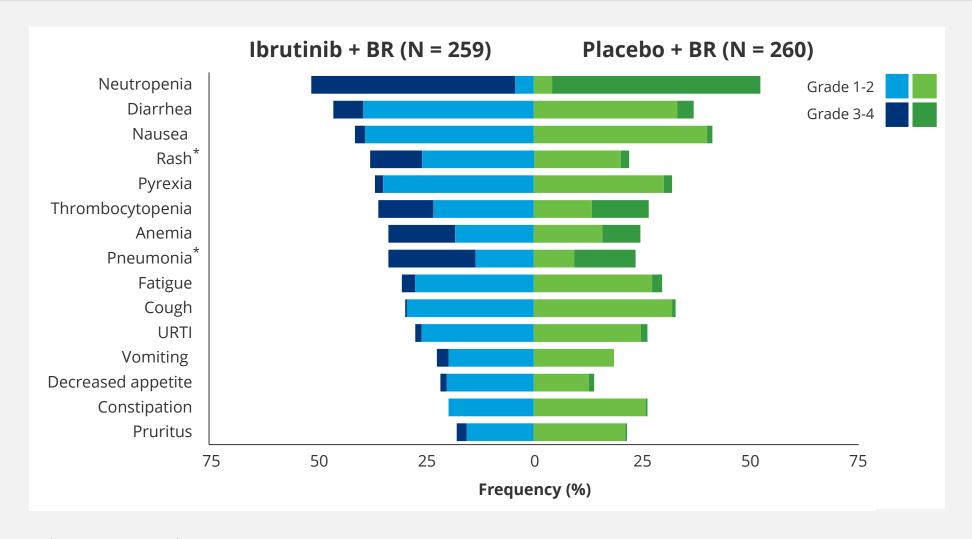
Blastoid/pleomorphic histology



TP53 mutation present



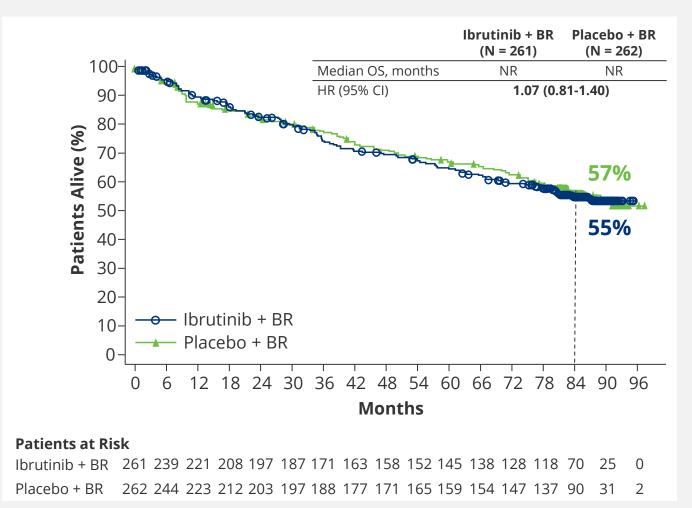
Response Rate


• CR rate was numerically higher in the ibrutinib arm (65.5% vs 57.6%; p = 0.057)

Time To Next Treatment

- Subsequent therapy at second-line:
- Ibrutinib arm: 52/261(19.9%)
 - BTKi: 6/52 (11.5%)
- Placebo arm: 106/262 (40.5%)
 - BTKi: 41/106 (38.7%)

Common Treatment-Emergent Adverse Events (≥ 20%)


TEAEs of Clinical Interest With BTKis

	Ibrutinib + BR (N = 259) Any Grade Grade 3 or 4		Placebo + BR (N = 260)	
			Any Grade	Grade 3 or 4
Any bleeding*	42.9%	3.5%	21.5%	1.5%
Major bleeding	5.8%	-	4.2%	-
Atrial fibrillation*	13.9%	3.9%	6.5%	0.8%
Hypertension	13.5%	8.5%	11.2%	5.8%
Arthralgia	17.4%	1.2%	16.9%	0

- These adverse events were generally not treatment limiting
- During the entire study period, second primary malignancies (including skin cancers) occurred in 21% in the ibrutinib arm and 19% in the placebo arm; MDS/AML in 2 and 3 patients, respectively

Overall Survival

Cause of death	Ibrutinib + BR (N = 261)	Placebo + BR (N = 262)
Death due to PD and TEAE	58 (22.2%)	70 (26.7%)
Death due to PD	30 (11.5%)	54 (20.6%)
Death due to TEAEs*	28 (10.7%)	16 (6.1%)
Death during post- treatment follow-up excluding PD and TEAEs	46 (17.6%)	37 (14.1%)
Total deaths	104 (39.8%)	107 (40.8%)

- Death due to Covid-19: 3 patients in the ibrutinib arm during the TEAE period and 2 patients in the placebo arm after the TEAE period
- Exploratory analysis of cause-specific survival including only deaths due to PD or TEAEs showed an HR of 0.88

Conclusions

SHINE is the first phase 3 study to show that ibrutinib in combination with chemoimmunotherapy is highly effective in patients with untreated MCL

Median PFS of 6.7 years: a statistically significant and clinically meaningful 2.3-year PFS advantage

Consistent and expected AEs with the known profiles of ibrutinib and BR

A new benchmark for first-line treatment of older patients with MCL or those unsuitable for ASCT

Discussion points : SHINE

1. Practice changing?

Thank You!

