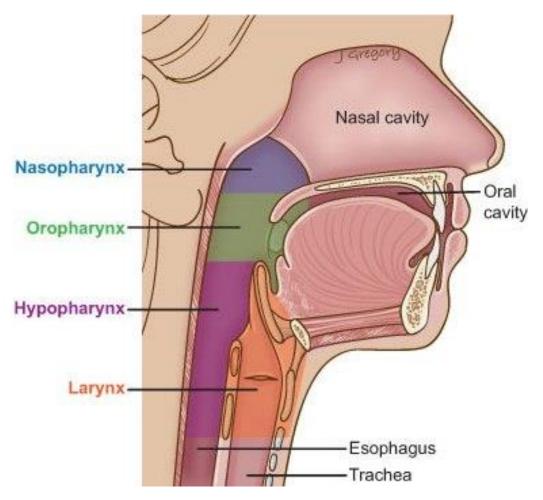
2022 ASCO Direct[™] Highlights Head and Neck Cancer

Cristina P. Rodriguez MD

Professor

University of Washington/Fred Hutch Cancer Research Center

August 25, 2022


Disclosures

	Cristina Rodriguez (Presenter)	Stephen Smith (spouse)
Institutional Researc h Funding	AstraZeneca Bristol Myers Squibb Cue Biopharma Kura Prelude Merck	Astrazeneca Bayer Beigene De Novo Biopharma Genentech Incyte Corporation Merck Sharp and Dohme Corp. Portola Pharmaceuticals
Advisory Board/ Consultancy	Cue Biopharma Coherus	Astrazeneca Millenium/Takeda Beigene Karyopharm KITE pharma Incyte ADC Therapeutics Abbvie
DSMC	Pionyr	

OUTLINE

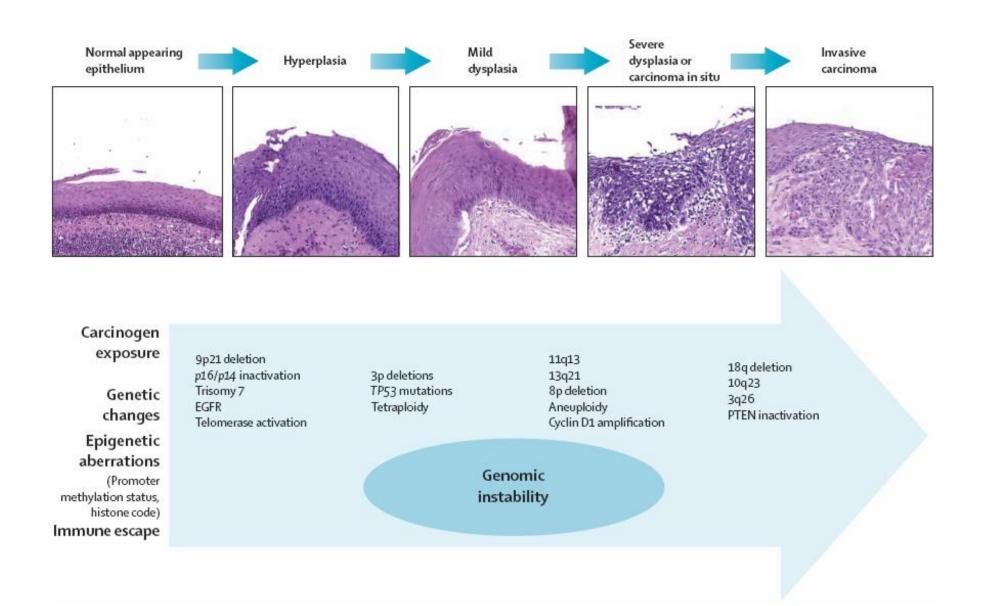
- Introduction/Background
- Locally advanced head and neck cancer (LAHNSCC)
 - Abstracts 6003, 6004, and 6005
- Recurrent/metastatic head and neck cancer
 - Abstracts 6008 and 6036

Epithelial malignancies of the head and neck

• 90% squamous cell carcinomas

 Most common mucosal sites oropharynx, oral cavity, larynx, hypopharynx

 85% locally advanced at diagnosis and candidates for curative intent therapy

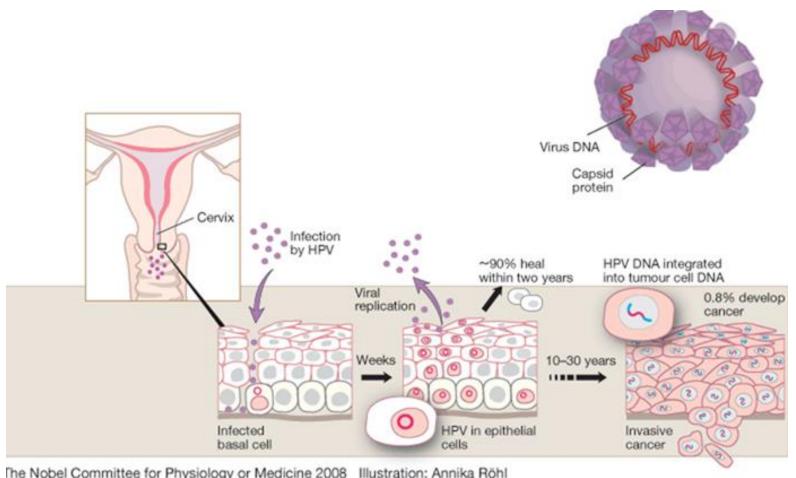

Pathogenesis

1. Tobacco and alcohol

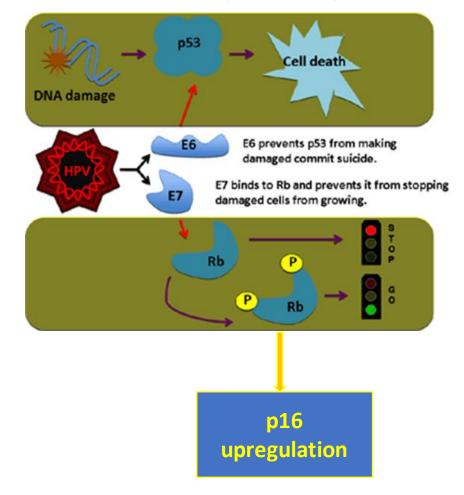
- oral cavity, larynx, hypopharynx
- declining in incidence
- economic and racial disparity

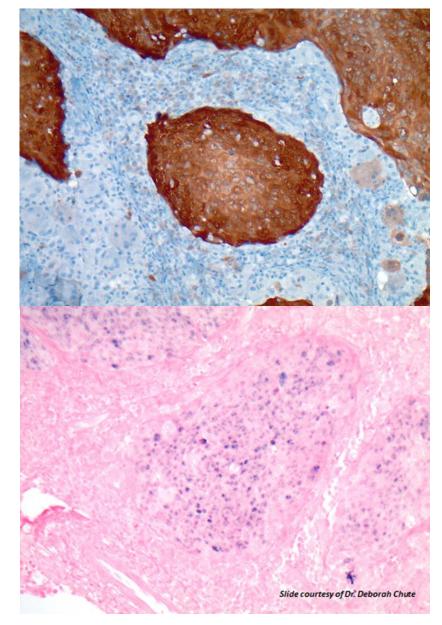
2. Viral infection

- HPV in oropharynx primaries, NPC
- HPV+ OPC increasing in incidence


Trends in tobacco use and tobacco related cancers

4,000 3,000 2,500 1,500 1,000 500 100 Lung & Bronchus 90 80 70 Kate per 100,000 Males 60 Stomach Prostate Colorectum 1930 1935 1940 1945 1950 1955 1960


Sturgis et al. Cancer. 2007 Oct 1;110(7):1429-35


HPV+ oropharynx cancer: a distinct entity with a viral association

The Nobel Committee for Physiology or Medicine 2008 Illustration: Annika Röhl

HPV+ oropharynx cancer: a distinct entity

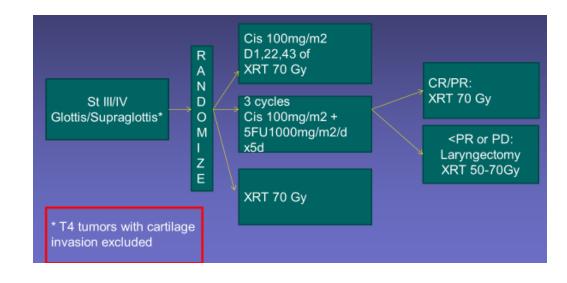
http://genetics.thetech.org/ask/ask359

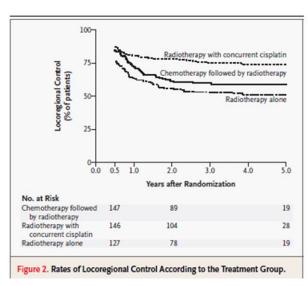
Therapeutic goals in LAHNSCC

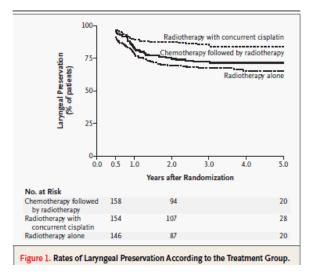
- Candidates for curative intent therapy
- Dual challenge of optimizing oncologic and functional outcomes
- Multidisciplinary evaluation is critical

Systemic therapy in LAHNSCC: Definitive non surgical therapy

Disease	Standard/s of Care	Evidence
Locally advanced p16+ oropharynx cancer	cisplatin 100mg/m2 day 1, 22, 43 + XRT	RTOG 1016 ¹ DE-ESCALaTE ² OS, LRC benefit vs. cetuxXRT
Unresectable HNSCC of OC, OP, L, HP	cisplatin 100mg/m2 day 1, 22, 43 of XRT	Intergroup Study ³ OS, DSS and LRC advantage vs XRT or splitXRT
Unresectable HNSCC of OC, OP, L, HP	cetuximab weekly concurrent with XRT	Bonner Study ⁴ OS, LRC and PFS advantage vs XRT
St III-IVB Larynx CA (supraglottis or subglottis)	cisplatin 100mg/m2 day 1, 22, 43 of XRT	RTOG 91-11 ⁵ Larynx Preservation and LRC benefit vs XRT or ind.+ XRT


¹Gillison et al. 2019 Jan 5;393(10166):40-50 ²Mehanna et al. Lancet. 2019 Jan 5;393(10166):51-60 ³Adelstein et al. J Clin Oncol, 2003; 21(1):92-8. ⁴Bonner JA. NEJM 2006:354:567-78. ⁵Forastiere AA et al. NEJM. 2003; 22(349) 2091-98.


Systemic therapy in LAHNSCC: Postoperative therapy for high risk features


Disease	Standard/s of Care	Evidence
Resected OP/OC/L/HP with + margins and/or ECE	cisplatin 100mg/m2 bolus + XRT	EORTC 22931 ¹ RTOG 95-01 ²
Unresectable HNSCC of OC, OP, L, HP	Posoperative radiation with cisplatin 40mg/m2	JCOG 1008 ³

¹Bernier et al. N Engl J Med. 2004;350(19):1945 ²Cooper et al. N Engl J Med. 2004;350(19):1937 ³Kiyota et al. J Clin Oncol. 2022 Jun 20;40(18):1980-1990

RTOG 91-11: organ preservation in larynx cancer

RTOG 91-11: organ preservation in larynx cancer

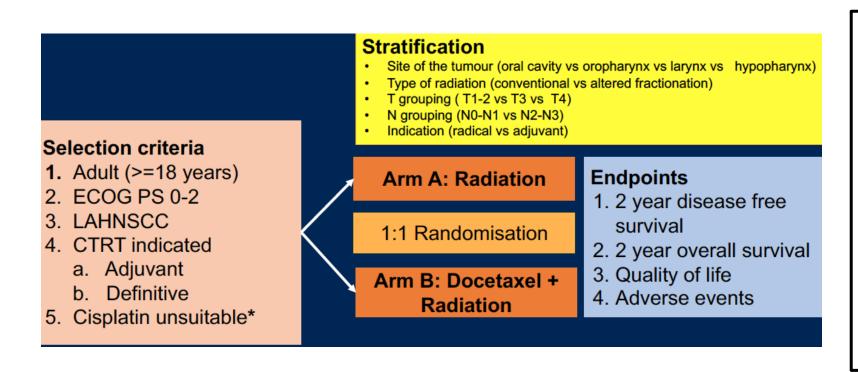
Table 2. Grade 3 or 4 Acute	e Toxic E	ffects, Ac	cording to	the Treat	ment Gr	oup.*						
Toxic Effect	Cisplatin plus Fluorouracil Followed by Radiotherapy					Radiotherapy with Concurrent Cisplatin (N=171)			Radiotherapy Alone (N=171)			
	Chem	otherapy (N=168)			therapy ((N=156)							
	grade 3	grade 4	total	grade 3	grade 4	total	grade 3	grade 4	total	grade 3	grade 4	total
					numbe	r of patier	nts (percent)					
Hematologic	43	44	87 (52)	13	10	23 (15)	64	17	81 (47)	3	2	5 (3)
Infection	4	5	9 (5)	2	0	2 (1)	7	0	7 (4)	2	0	2 (1)
Mucosal (stomatitis)	27	7	34 (20)	36	2	38 (24)	64	9	73 (43)	40	1	41 (24)
Pharyngeal or esophageal	_	_	_	30	0	30 (19)	60	0	60 (35)	32	0	32 (19)
Laryngeal	_	_	_	20	1	21 (13)	29	2	31 (18)	23	5	28 (16)
Dermatologic (in radiation field)	-	_	_	16	0	16 (10)	10	2	12 (7)	15	0	15 (9)
Nausea or vomiting	20	3	23 (14)	0	0	0	28	7	35 (20)	0	0	0
Renal or genitourinary	3	0	3 (2)	2	0	2 (1)	6	1	7 (4)	0	0	0
Neurologic	5	1	6 (4)	0	0	0	8	1	9 (5)	0	0	0
Other	20	7	27 (16)	16	2	18 (12)	58	11	69 (40)	9	1	10 (6)
Overall maximal severity	62	49	111 (66)	66	13	79 (51)	99	32	131 (77)	71	9	80 (47)

Cisplatin-based chemoradiation (CCRT) in locally advanced HNSCC (LAHNSCC)

- A therapeutic standard in definitive 1-4 or postoperative 5,6 settings
- Toxicities are a significant burden to patients and health care systems
- Comorbidity overrepresented in HPV subset and can preclude CCRT

¹Forastiere AA et al. NEJM. 2003; 22(349) 2091-98. ²Adelstein et al. J Clin Oncol, 2003; 21(1):92-8. ³Gillison et al. 2019 Jan 5;393(10166):40-50 ⁴Mehanna et al. Lancet. 2019 Jan 5;393(10166):51-60 ⁵Bernier et al. N Engl J Med. 2004;350(19):1945 ⁶Cooper et al. N Engl J Med. 2004;350(19):1937

Cristina P. Rodriguez, MD


Abstracts 6003, 6004 and 6005

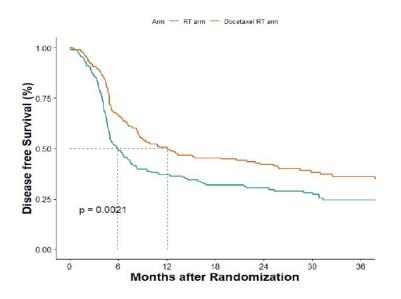
Key questions addressed by 3 studies:

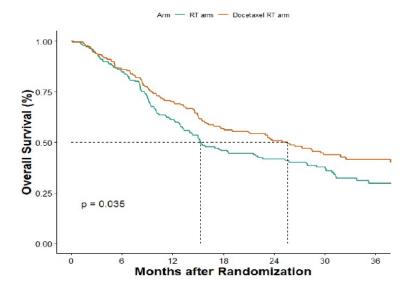
- Can we improve outcomes in patients who are cisplatin ineligible?
 - 6003
- Can we reduce toxicity without compromising efficacy in the platinum eligible patient?
 - 6004
- Can we reduce high-grade mucositis during CCRT?
 - 6005

Abstract 6003:

Results of phase 3 randomized trial for use of docetaxel as a radiosensitizer in patients with head and neck cancer unsuitable for cisplatin-based chemoradiation.

Cisplatin ineligibility¹


- ECOG PS ≥2
- Gr ≥2 organ dysfunction (CTCAE)
- CrCl of <50ml/min or comorbidities, nephrotoxic medications
- Wt loss >10% in last 6 mo, BMI
 ≤16 kg/m2


Abstract 6003: Results

- 356 of planned 600 patients accrued
 - 16% were ≥70 y.o.
 - ECOG of 2 in 40% vs 50% (nonsignificant)
 - p16+ OPC represented <5% of population
 - 80% of adjuvant XRT was for ECE
 - 65% had CrCl <50 or hearing loss
- Predominantly definitive XRT (60%) with 2D planning
 - High rates of administration of all XRT (91%) and chemo (86%) doses

Abstract 6003: Results

- Toxicity higher in docetaxel arm (mucositis, odynophagia, dysphagia)
- No difference in hematologic AEs

- Unplanned subset analysis appears to benefit all subgroups (HR most robust for definitive XRT)
- PRQOL at 6 mos post XRT favorable for docetaxel XRT

Abstract 6003: Discussion

- The cisplatin ineligible population has been historically excluded from trials
- This is changing

Trial	N	Intervention	Primary endpoint/Results		
NCT02707588 ¹ GORTEC 2015-01 PembroRad	133	Pembrolizumab/XRT vs Cetuximab/XRT	2 yr LRC No difference in both arms (60% vs 59%)		
NCT02999087 ² GORTEC REACH	277	Avelumab/cetuximab/XRT vs Cetuximab/XRT	2 yr PFS No difference in both arms (44% vs 31%)		
NCT03258554 NRG-HN004	523	Durvalumab/XRT vs Cetuximab/XRT	To be presented at ASTRO 2022		

Noncisplatin concurrent regimens in definitive XRT

Trial	N	Intervention	Exp Arm Results	Exp arm Toxicities
GORTEC 9401 ^{1,2}	226	Carboplatin/5FU/XRT vs. XRT	OS DFS superior	Mucositis/Skin/Nutrition/Heme toxicity worse
GORTEC 2007- 01 ³	406	Carboplatin/5FU/Cetuximab/XRT Vs. Cetuximab XRT	PFS and LRC superior OS similar	LFT elevation, leucopenia, PEG, hospitalizations worse
Bonner IMCL9815 ⁴	253	Cetuximab/XRT vs. XRT	OS and LRC superior	More rash and infusion reactions

Noncisplatin concurrent regimens in adjuvant XRT

- RTOG 0920
 - cetuximab + XRT vs XRT in intermediate risk resected LAHNSCC
 - Completed and awaiting results
- RTOG 1216
 - Initial randomized Ph II
 - cisplatin/XRT vs docetaxel/XRT vs docetaxel/cetuximab/XRT
 - Ongoing redesigned Randomized Ph III
 - cisplatinXRT vs atezolizumab/cisplatin/XRT vs docetaxel/cetuximab/XRT

Abstract 6003: Discussion

- Concurrent docetaxel and XRT
 - DFS and OS benefit in this cisplatin ineligible population (HPV neg)
 - increased non-hematologic toxicities
- Superiority over other nonplatinum definitive /adjuvant XRT regimens unknown
 - Other studies with noncisplatin regimens awaited (HN004, RTOG 1216)

Abstract 6004:

An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial)

- Addresses a longstanding controversy in our field (weekly vs. q3week)
 - Landmark studies of CCRT used cisplatin q3week 100mg/m²
 - Weekly administration more accepted
 - Tolerability
 - Potential radiosensitization benefits

Abstract 6004: Design

- Randomized open label phase III study
 - Conducted in multiple institutions India
 - Weekly 40mg/m² vs q3 week 100mg/m² in definitive XRT setting
- Primary endpoint: LRC at 2 years

Abstract 6004: Results

- Patient population (N=278)
 - p16 positive in 5%
 - 20% with PS 2

Treatment

- 75% 2D planning
- only 44% had no treatment delays
- 17% received <200mg/m2 cisplatin dose density

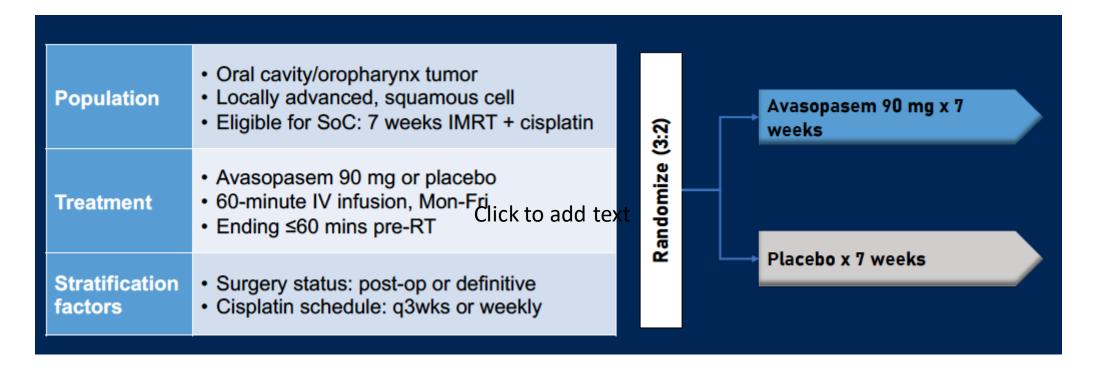
Abstract 6004: Results

- 2 yr LRC similar 56% (q3week) vs 60% (weekly)
- Similar median OS in mos: 30 (q3week) vs 25 (weekly)
- Toxicity favors weekly arm:
 - Grade 3 mucositis, myelosuppression, renal, vomiting
- Health care utilization metrics favor weekly arm
 - · Reduced need for IVF, hospitalization, treatment interruption

Randomized studies of weekly 40mg/m² vs q3week 100mg/m²

Author (year)	N	Setting/Disease	Results for weekly	Toxicity with weekly
Kiyota (2022)	261	Adjuvant high risk resected LAHNSCC	OS noninferior	Gr 3 neutropenia/ infection/renal/oto lower Gr 3Thrombocytopenia higher
Liang (abst 2017)	529	Definitive NPC	Similar 2yr FFS	Similar Gr 3/4 tox Neutropenia/ thrombocytopenia higher
Lee (2016)	109	Definitive NPC	Similar 3yr PFS	Similar Gr3/4 tox

Abstract 6004: Discussion


- Supports use of weekly cisplatin concurrent with XRT
 - Predominantly HPV negative population
 - Ongoing HN009 exploring both HPV+ and negative subset
- Acute toxicities more favorable and consistent with Kiyota et al.
 - Ototoxicity similar
- Attractive from healthcare utilization standpoint

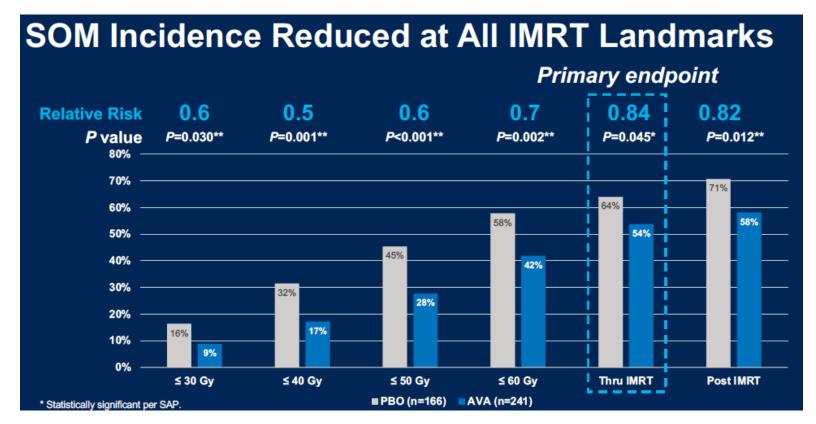
Abstract 6005:

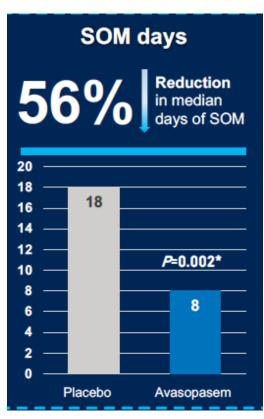
ROMAN: Phase 3 trial of avasopasem manganese (GC4419) for severe oral mucositis (SOM) in patients receiving chemoradiotherapy (CRT) for locally advanced, nonmetastatic head and neck cancer (LAHNC).

- High grade mucositis toxicity occurs in most patients undergoing CCRT
- Aggressive supportive care is necessary
 - PEG, IV fluids, narcotics, hospitalization, treatment interruptions
- Avasopasem: dismutase mimetic with encouraging phase 2 data¹

Abstract 6005: Design

Primary endpoint: Incidence of SOM thru IMRT

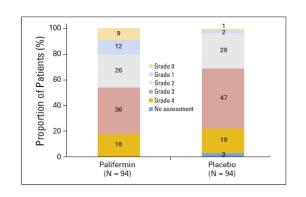

Accrual goal: 455

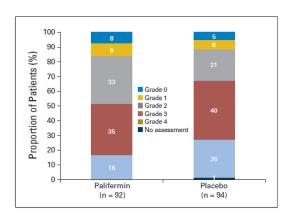

Abstract 6005: Results

Patients

- Most were p16+ OPC (80%)
- Treated in definitive setting (80%)
- Well balanced patient and treatment characteristics (including # of mucosal sites receiving >54Gy)
- Approx 10% were randomized, but not treated or included ITT

Abstract 6005: Results





High grade toxicities similar
Any grade N/V higher with avasopasem

No approved agent for SOM in LAHNCC

- Palifermin (human recombinant keratinocyte GF)
 - Approved for heme malignancy pts undergoing SCT
 - Randomized studies in LAHNSCC for both definitive and adjuvant XRT^{1,2}
 - Weekly dosing reduced SOM incidence and duration
 - No difference use of opioids, pain scores, treatment compliance, cancer outcomes

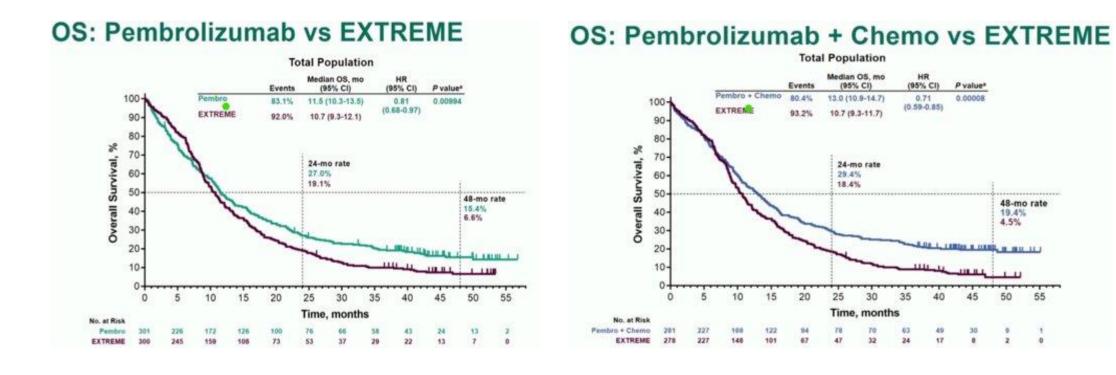
Abstract 6005: Discussion

- This study addresses a key unmet need in LAHNSCC
- Clinical implications of primary endpoint?
- Dosing logistics; increased N/V; no data on therapeutic outcomes
- Endpoints relevant to patient care and outcomes needed

Metastatic head and neck cancer

- Incurable disease with poor prognosis
- High symptom burden especially with local/regional recurrence
- Survival expectation is longer in HPV+ OPC
- Chemosensitive disease with multiple active agents
- Genomic instability/mutation status and viral mediation makes it ideal for immunotherapy approaches

Immune checkpoint inhibitor indications in R/M HNSCC

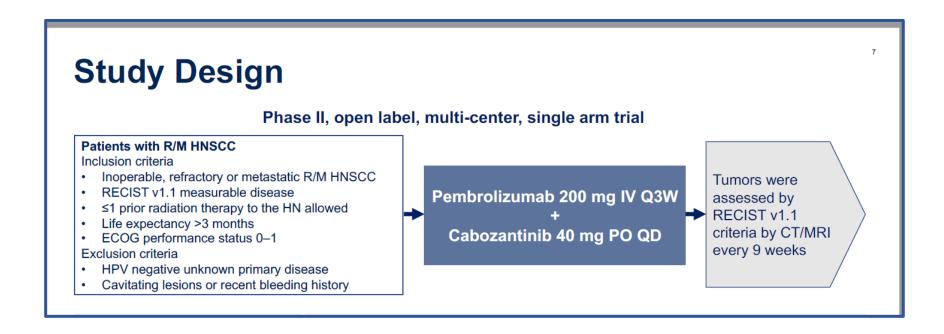

Line of therapy (biomarker)	Drug or Regimen	Evidence
1st line (CPS >1)	Pembrolizumab monotherapy	¹ Keynote-48 Phase III trial
1st line (any CPS)	Pembrolizumab + platinum + 5FU	¹ Keynote-48 Phase III trial
2nd line post cisplatin	Nivolumab	² Checkmate 141 Phase III trial
2nd line post cisplatin	Pembrolizumab	³ Keynote-40 Phase III trial

¹Burtness et al. Lancet 2019 Nov 23; 394 (10212): 1915-1928.

²Ferris, et al. NEJM 2016 Nov 10;375(19):1856-1867

³Cohen et al. Lancet 2019 Jan 12;393(10167):156-167

Overall survival: Keynote-48


- Objective response rates from 20-35%, short DoR for chemolO
- Grade ≥3 AEs high in chemolO combinations

Abstracts 6008 and 6036

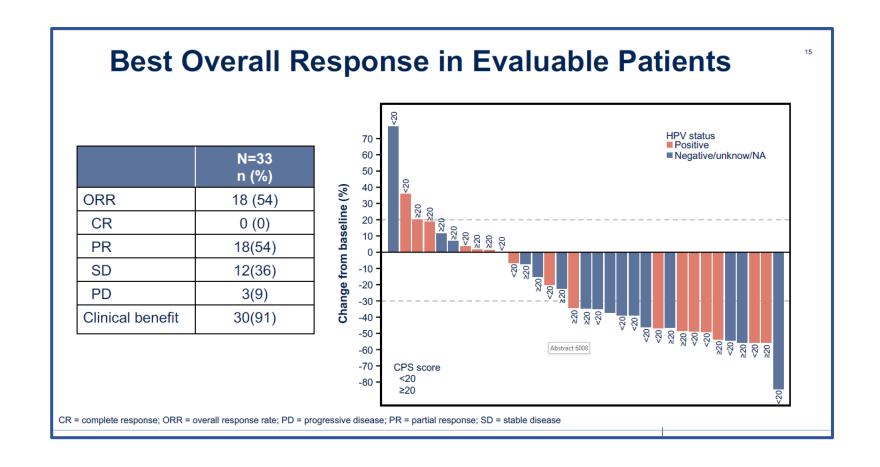
Key questions addressed by 2 studies:

- Can we improve response rates in first line immune checkpoint inhibition?
 - 6008
- What do we expect from systemic therapy in the post immune checkpoint inhibitor setting?
 - 6036

Abstract 6008

Primary objectives

- Determine the safety and tolerability of pembrolizumab + cabozantinib in this patient population
- Determine the objective response rate ORR per RECIST v1.1


Statistics

- ORR was tested based on the reported ORR for single-agent pembrolizumab of 18%
 - Estimated that ORR will improve to ≥35% with pembrolizumab + cabozantinib, yielding a type 1 error of 0.05 and a power of 80% when the true response rate is 35%
- For single-arm design with null hypothesis of ORR ≤15% vs one-sided alternative, 34
 patients with evaluable responses are needed
- If the number of responses is ≤9 out of 34, the trial will be claimed as not promising

Abstract 6008

- 36 patients enrolled and treated
- 61% oropharynx cncer
- 50% CPS ≥20
- Fatigue most common AE (44%)
- 47% required cabozantinib dose reduction

Abstract 6008: Results

Abstract 6008: Discussion

- Promising non-randomized data with combined VEGF and immune checkpoint inhibition
- Toxicities required TKI dose reduction
- In line with experience in other solid tumors (renal carcinoma), but awaits randomized comparison to immune checkpoint inhibitor alone

Abstract 6036

- Standard of care in post immune checkpoint inhibitor is undefined
- Retrospective study of R/M HNSCC in 7 French hospitals
- 99 patients included
 - 63 received taxane+cetuximab
 - 36 received taxane+platinum+cetuximab
- Oral cavity (35%) and oropharynx cancer (35%) most common primary sites

Abstract 6036: Results

- Overall response rate to post IO chemo 63%
- ORR for taxane+ cetuximab 57%
- ORR for taxane+platinum+cetuximab 69%

Abstract 6036: Discussion

- Taxane based combinations are efficacious in patients progressing on immune checkpoint inhibitors
- Represent active regimens for patients in need of systemic therapy in the second line palliative intent setting

THANK YOU!

rodrigcr@uw.edu